scholarly journals Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos

Reproduction ◽  
2004 ◽  
Vol 128 (3) ◽  
pp. 301-311 ◽  
Author(s):  
Paolo Rinaudo ◽  
Richard M Schultz

Culture of preimplantation embryos affects gene expression. The magnitude of the effect on the global pattern of gene expression, however, is not known. We compared global patterns of gene expression in blastocysts cultured from the one-cell stage in either Whitten’s medium or KSOM + amino acids (KSOM/AA) with that of blastocysts that developed in vivo, using the Affymetrix MOE430A chip. The analysis revealed that expression of 114 genes was affected after culture in Whitten’s medium, whereas only 29 genes were mis-expressed after culture in KSOM/AA. Expression Analysis Systematic Explorer was used to identify biological and molecular processes that are perturbed after culture and indicated that genes involved in protein synthesis, cell proliferation and transporter function were down-regulated after culture in Whitten’s medium. A common set of genes involved in transporter function was also down-regulated after culture in KSOM/AA. These results provide insights as to why embryos develop better in KSOM/AA than in Whitten’s medium, and highlight the power of microarray analysis to assess global patterns of gene expression.

Reproduction ◽  
2007 ◽  
Vol 134 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Gnanaratnam Giritharan ◽  
Said Talbi ◽  
Annemarie Donjacour ◽  
Francesca Di Sebastiano ◽  
Anthony T Dobson ◽  
...  

In vitro culture (IVC) of preimplantation mouse embryos is associated with changes in gene expression. It is however, not known if the method of fertilization affects the global pattern of gene expression. We compared gene expression and development of mouse blastocysts produced by in vitro fertilization (IVF) versus blastocysts fertilized in vivo and cultured in vitro from the zygote stage (IVC) versus control blastocysts flushed out of the uterus on post coital day 3.5. The global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip. It appears that each method of fertilization has a unique pattern of gene expression and development. Embryos cultured in vitro had a reduction in the number of trophoblastic cells (IVF 33.5 cells, IVC 39.9 cells, and 49.6 cells in the in vivo group) and, to a lesser degree, of inner cell mass cells (12.8, 11.7, and 13.8 respectively). The inner cell mass nuclei were larger after culture in vitro (140 μm2, 113 μm2, and 86 μm2 respectively). Although a high number of genes (1912) was statistically different in the IVF cohort when compared with the in vivo control embryos, the magnitude of the changes in gene expression were low and only a minority of genes (29 genes) was changed more than fourfold. Surprisingly, IVF embryos were different from IVC embryos (3058 genes were statistically different, but only three changed more than fourfold). Proliferation, apoptosis, and morphogenetic pathways are the most common pathways altered after IVC. Overall, IVF and embryo culture have a profound effect on gene expression pattern and phenotype of mouse preimplantation embryos.


Development ◽  
1972 ◽  
Vol 27 (2) ◽  
pp. 431-445
Author(s):  
P. Barlow ◽  
D. A. J. Owen ◽  
Chris Graham

Strain PO preimplantation embryos were labelled with [3H]thymidine. The incorporation of the label was studied by autoradiography of air-dried and serially sectioned embryos. DNA amounts were measured with a microdensitometer. The following observations were made at the 5- to 16-cell stages. All nuclei contained 2C–4C amounts of DNA and all could eventually synthesize DNA. However, after short labelling intervals, unlabelled nuclei were found with 2C and AC amounts of DNA. We concluded that both the G1 and the G2 phases of the cell cycle were present at this time. Embryos were found in which the S phase of the 4th and the 5th cell cycles post fertilization overlapped. In 12- to 15-cell embryos which contained inside cells it was found that the inside cells were produced by one of the first four 8-cell-stage blastomeres to divide. The inside cells of 9- to 256-cell embryos had a significantly higher labelling index than the outside cells and the number of inside cells increased faster than the number of outside cells during development. We concluded that the inside cells were dividing faster than the outside cells. Blastocysts which had developed in vivo or in vitro contained nuclei with greater than 4C amounts of DNA. We concluded that the development of excess DNA amounts does not depend on the maternal environment. These nuclei which contained greater than 4C amounts of DNA were labelled after short exposures to radioactivity. We concluded that it was likely that they were becoming polyploid.


1994 ◽  
Vol 6 (2) ◽  
pp. 229 ◽  
Author(s):  
K Turner ◽  
AW Rogers ◽  
EA Lenton

The dry mass of mouse embryos cultured in vitro in medium alone or in an organ culture system were measured by means of the Vickers M86 scanning microinterferometer. The data were compared with previous data on the dry mass of preimplantation embryos in vivo. The metabolism of embryos cultured in vitro differs from that of fresh embryos. In cultured embryos, dry mass decreases throughout the 2-cell stage whereas the dry mass is increasing at this stage in vivo. Embryos in an organ culture system regain a dry mass profile, similar to that observed in vivo at the late cleavage stage. These results support the view that conditions for embryo metabolism are suboptimal in vitro and that, although the oviduct may confer some advantage on developing embryos in vitro, it is unable fully to support the pattern of metabolism, as assessed by dry mass, observed in vivo.


Author(s):  
D. G. Chase ◽  
W. Winters ◽  
L. Piko

Although the outlines of human adenovirus entry and uncoating in HeLa cells has been clarified in recent electron microscope studies, several details remain unclear or controversial. Furthermore, morphological features of early interactions of human adenovirus with non-permissive mouse cells have not been extensively documented. In the course of studies on the effects of human adenoviruses type 5 (AD-5) and type 12 on cultured preimplantation mouse embryos we have examined virus attachment, entry and uncoating. Here we present the ultrastructural findings for AD-5.AD-5 was grown in HeLa cells and purified by successive velocity gradient and equilibrium density gradient centrifugations in CsCl. After dialysis against PBS, virus was sedimented and resuspended in embryo culture medium. Embryos were placed in culture at the 2-cell stage in Brinster's medium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Bernhardt ◽  
Marcus Dittrich ◽  
Rabih El-Merahbi ◽  
Antoine-Emmanuel Saliba ◽  
Tobias Müller ◽  
...  

AbstractPaternal obesity is known to have a negative impact on the male’s reproductive health as well as the health of his offspring. Although epigenetic mechanisms have been implicated in the non-genetic transmission of acquired traits, the effect of paternal obesity on gene expression in the preimplantation embryo has not been fully studied. To this end, we investigated whether paternal obesity is associated with gene expression changes in eight-cell stage embryos fathered by males on a high-fat diet. We used single embryo RNA-seq to compare the gene expression profile of embryos generated by males on a high fat (HFD) versus control (CD) diet. This analysis revealed significant upregulation of the Samd4b and Gata6 gene in embryos in response to a paternal HFD. Furthermore, we could show a significant increase in expression of both Gata6 and Samd4b during differentiation of stromal vascular cells into mature adipocytes. These findings suggest that paternal obesity may induce changes in the male germ cells which are associated with the gene expression changes in the resulting preimplantation embryos.


Reproduction ◽  
2014 ◽  
Vol 147 (5) ◽  
pp. 627-638 ◽  
Author(s):  
Kouji Komatsu ◽  
Akira Iwase ◽  
Miki Mawatari ◽  
Jingwen Wang ◽  
Mamoru Yamashita ◽  
...  

Hormonal stimulation in superovulation induces female mice to ovulate more oocytes than spontaneous ovulation. Because the superovulated oocytes contain a number of oocytes that normally regress before spontaneous ovulation or immature oocytes, the development of some embryos that derive from these oocytes by IVF is prevented. Therefore, the quality of superovulated oocytes should differ from that of spontaneously ovulated oocytes. In this study, we evaluated the quality of superovulated oocytes, by examining 1- and 2-cell stage embryos, in which the development mainly depends on the maternal mRNA, proteins, and mitochondria that are contained in the oocytes, and we then measured the mitochondrial membrane potential (ΔΨm) of the 1- and 2-cell stage,in vivo-fertilized, and IVF embryos. The ΔΨmof 1-cell stage IVF embryos was lower than that ofin vivo-fertilized embryos; however, there was no difference between IVF embryos. During the developmental process from 1- to 2-cell stage, the ΔΨmofin vivo-fertilized embryos was highly upregulated, whereas a number of IVF embryos remained unchanged. As a result, 2-cell stage embryos were divided into two groups: high- and low- ΔΨm2-cell stage IVF embryos. The development of low-ΔΨm2-cell stage IVF embryos tended to be arrested after the 2-cell stage. These results indicated that the upregulation of ΔΨmduring the 1- to 2-cell stage was important in the development of early preimplantation embryos; there were some defects in the mitochondria of superovulated oocytes, which prevented their development.


1990 ◽  
Vol 2 (1) ◽  
pp. 35 ◽  
Author(s):  
RG Wales ◽  
J Hunter

Electrophoretic separation of solubilized embryos incubated for 24 h in the presence of [U-14C]glucose indicated incorporation of glucose carbon into a number of protein bands. Treatment of nitrocellulose blots of electrophoretograms with glucosidases had no effect on incorporated counts, confirming that the labelled bands were not due to protein bound glycogen. Furthermore, addition of 0.1 microgram mL-1 tunicamycin to the incubation medium virtually eliminated incorporation of glucose into the protein bands but had no effect on the pattern or rate of incorporation of labelled amino acids in parallel experiments. Also the pattern of labelling of protein by glucose was reflected in the pattern of binding of Con A to the nitrocellulose blots. There were quantitative and qualitative changes in labelling as development progressed. For embryos cultured from the 2-cell stage, a small amount of label was incorporated in two major bands at relative mobility (Mr) 69 and 97 K. With culture from the 8-cell stage, three additional major bands (33, 44 and 56 K) were labelled. Embryos cultured from the morula stage showed a different profile of incorporation; there was much more active labelling, and eight major and a number of minor radioactive bands were identified. Whilst tunicamycin suppressed glucose incorporation into glycoproteins and inhibited compaction of embryos, it had little effect on other parameters of metabolism during incubation in its presence for 24 h. No significant effects of the metabolite on protein synthesis, glycogen storage, lactate production or overall macromolecular synthesis were evident. By contrast, the anabolic metabolism of embryos decompacted by long periods of exposure to tunicamycin was severely reduced although glycolysis was still unaffected. Amphomycin at very high concentration (500 micrograms mL-1) was toxic to embryos but at concentrations up to 250 micrograms mL-1 had no effect on compaction and development of blastocysts. Addition of monensin to the incubation medium [16 micrograms mL-1] did not interfere with the development of either 2-cell or 8-cell embryos to blastocysts.


Development ◽  
1979 ◽  
Vol 53 (1) ◽  
pp. 145-162
Author(s):  
H. Alexandre

The inhibition of spermidine and spermine synthesis by methylglyoxal-Bis(guanylhydrazone) (MeGAG) at concentrations of 5, 10 and 20 µM, induces a reversible metabolic quiescence of mouse embryos, cultured in vitro from the 2-cell stage, at an average of 10·2, 8·5 and 6·9 cell stages respectively. In contrast, the inhibition of putrescine synthesis by α-methylornithine (α-MeOrn) at concentrations up to 10 mM fails to inhibit blastocyst formation, as shown previously. Complete reversibility of this induced arrest of development is observed for treatments up to 31 h with MeGAG at 10 µM. In agreement with the biological clock theory of Smith & MacLaren's hypothesis, the delay in cavitation is proportional to the length of treatment. However, the average cell numbers of the ‘delayed nascent blastocysts’ of all treated embryos (21·8–24·2) are consistently lower than that of control embryos (33·6) irrespective of the duration of treatment. It seems therefore that under some experimental conditions, DNA and chromosome replication on the one hand and cytoplasmic maturation on the other may be desynchronized. This suggests a role for a cytoplasmic factor in the induction of cavitation.


Sign in / Sign up

Export Citation Format

Share Document