Pharmacological Reversal Of AGE-Related Protein Crosslinking with Agents that Cleave α-Dicarbonyls

Author(s):  
Peter Ulrich
2021 ◽  
pp. 108679
Author(s):  
Kevin L. Schey ◽  
Zhen Wang ◽  
Michael Friedrich ◽  
Roger J.W. Truscott

2020 ◽  
Author(s):  
Om Srivast ◽  
Kiran Srivast ◽  
Roy Joseph ◽  
Landon Wilson

Abstract We have generated two mouse models, in one by inserting the human lens αAN101D transgene in CRYαAN101D mice, and in the other by inserting human wild-type αA-transgene in CRYαAWT mice. The CRYαAN101D mice developed cortical cataract at about 7-months of age relative to CRYαAWT mice. The objective of the study was to determine the following relative changes in the lenses of CRYαAN101D- vs. CRYαAWT mice: age-related changes with specific emphasis on protein insolubilization, relative membrane-association of αAN101D vs. WTαA proteins, and changes in intracellular ionic imbalance and membrane organization. Methods: Lenses of varying ages from CRYαAWT and CRYαAN101D mice were compared for an age-related protein insolubilization. The relative lens membrane-association of the αAN101D- and WTαA proteins in the two types of mice was determined by immunohistochemical-, immunogold-labeling-, and western blot analyses. The relative levels of membrane-binding of recombinant αAN101D- and WTαA proteins was determined by an in vitro assay, and the levels of intracellular Ca2+ uptake and Na, K-ATPase mRNA were determined in the cultured epithelial cells from lenses of the two types of mice.Results: Compared to the lenses of CRYαAWT, the lenses of CRYαAN101D mice exhibited: (A) An increase in age-related protein insolubilization beginning at about 4-months of age. (B) A greater lens membrane-association of αAN101D- relative to WTαA protein during immunogold-labeling- and western blot analyses, including relatively a greater membrane swelling in the CRYαAN101D lenses. (C) During in vitro assay, the greater levels of binding αAN101D- relative to WTαA protein to membranes was observed. (D) The 75% lower level of Na, K-ATPase mRNA but 1.5X greater Ca2+ uptake were observed in cultured lens epithelial cells of CRYαAN101D- than those of CRYαAWT mice. Conclusions: The results show that an increased lens membrane association of αAN101D--relative WTαA protein in CRYαAN101D mice than CRYαAWT mice occurs, which causes intracellular ionic imbalance, and in turn, membrane swelling that potentially leads to cortical opacity.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2693 ◽  
Author(s):  
Alisson Clemenceau ◽  
Mirette Hanna ◽  
Kaoutar Ennour-Idrissi ◽  
Anna Burguin ◽  
Caroline Diorio ◽  
...  

As a downregulator of the Wnt signaling pathway, SFRP1 is involved in several components of the age-related lobular involution process such as inflammation, apoptosis, and adipogenesis. Because microcalcifications are associated with inflammation, we aimed to demystify the cross talk between SFRP1, inflammatory markers, and microcalcifications by assessing SFRP1 expression (immunohistochemistry) in a cohort of 162 women with different degrees of lobular involution. SFRP1 expression was inversely associated with the degree of lobular involution (OR = 0.84; p-value < 0.01). SFRP1 expression, age at mastectomy, and waist circumference taken together predicted the degree of lobular involution (AUC = 78.1). This predictive model was best in patients with microcalcifications (AUC = 81.1) and in parous women (AUC = 87.8). SFRP1 expression was correlated with leptin (rho = 0.32), TNF-α (rho = 0.21), and IL-6 (rho = 0.21) expression by epithelial cells (all p-values <0.001). SFRP1 expression was lower in nulliparous women with involuted breast tissue compared with parous women with involuted breast tissue (Δmean = −2.31; p-value < 0.01) and was higher in nulliparous women with microcalcifications compared with nulliparous women without microcalcifications (Δmean = 2.4; p-value < 0.05). In this study, we highlighted two SFRP1-based predictive models for incomplete lobular involution and the development of microcalcifications and identified two distinct inflammatory profiles associated with age-related lobular involution in parous and nulliparous women.


2015 ◽  
Vol 46 (2) ◽  
pp. 78-87 ◽  
Author(s):  
G. A. Romanov ◽  
V. S. Sukhoverov ◽  
B. F. Vanyushin

2017 ◽  
Vol 112 ◽  
pp. 52
Author(s):  
Jeannette Koenig ◽  
Michaela Press ◽  
Tilman Grune ◽  
Annika Hoehn

2016 ◽  
Vol 15 (12) ◽  
pp. 4731-4741 ◽  
Author(s):  
Julia H. Roberts ◽  
Fang Liu ◽  
Jaret M. Karnuta ◽  
Michael C. Fitzgerald

2010 ◽  
Vol 24 (12) ◽  
pp. 4816-4824 ◽  
Author(s):  
J. Renwick Beattie ◽  
Anna M. Pawlak ◽  
Michael E. Boulton ◽  
Jianye Zhang ◽  
Vincent M. Monnier ◽  
...  

2020 ◽  
Author(s):  
Om Srivast ◽  
Kiran Srivast ◽  
Roy Joseph ◽  
Landon Wilson

Abstract We have generated two mouse models, in one by inserting the human lens αAN101D transgene in CRYαA N101D mice, and in the other by inserting human wild-type αA-transgene in CRYαA WT mice. The CRYαA N101D mice developed cortical cataract at about 7-months of age relative to CRYαA WT mice. The objective of the study was to determine the following relative changes in the lenses of CRYαA N101D - vs. CRYαA WT mice: age-related changes with specific emphasis on protein insolubilization, relative membrane-association of αA N101D vs. WTαA proteins, and changes in intracellular ionic imbalance and membrane organization. Methods: Lenses of varying ages from CRYαA WT and CRYαA N101D mice were compared for an age-related protein insolubilization. The relative lens membrane-association of the αAN101D- and WTαA proteins in the two types of mice was determined by immunohistochemical-, immunogold-labeling-, and western blot analyses. The relative levels of membrane-binding of recombinant αA N101D - and WTαA proteins was determined by an in vitro assay, and the levels of intracellular Ca 2+ uptake and Na, K-ATPase mRNA were determined in the cultured epithelial cells from lenses of the two types of mice. Results: Compared to the lenses of CRYαA WT , the lenses of CRYαA N101D mice exhibited: (A) An increase in age-related protein insolubilization beginning at about 4-months of age. (B) A greater lens membrane-association of αAN101D- relative to WTαA protein during immunogold-labeling- and western blot analyses, including relatively a greater membrane swelling in the CRYαA N101D lenses. (C) During in vitro assay, the greater levels of binding αAN101D- relative to WTαA protein to membranes was observed. (D) The 75% lower level of Na, K-ATPase mRNA but 1.5X greater Ca 2+ uptake was observed in cultured lens epithelial cells of CRYαA N101D- than those of CRYαA WT mice. Conclusions: The results show that an increased lens membrane association of αA N101D - - relative WTαA protein in CRYαA N101D mice than CRYαA WT mice occurs, which causes intracellular ionic imbalance, and in turn, membrane swelling that potentially leads to cortical opacity.


2012 ◽  
Vol 15 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Ben A. Bahr ◽  
Meagan L. Wisniewski ◽  
David Butler

2018 ◽  
Vol 113 ◽  
pp. 1-9 ◽  
Author(s):  
Siti Maisarah Hasenan ◽  
Saiful Anuar Karsani ◽  
Zakiah Jubri

Sign in / Sign up

Export Citation Format

Share Document