Laser fusion cutting of difficult materials

Author(s):  
A. Riveiro ◽  
F. Quintero ◽  
J. Pou
Author(s):  
Miloš Madić ◽  
Mohamed H Gadallah ◽  
Dušan Petković

For an efficient use of laser cutting technology, it is of great importance to analyze the impact of process parameters on different performance indicators, such as cut quality criteria, productivity criteria, costs as well as environmental performance criteria (energy and resource efficiency). Having this in mind, this study presents the experimental results of CO2 laser fusion cutting of AISI 304 stainless steel using nitrogen, with the aim of developing a semi-empirical mathematical model for the estimation of process efficiency as an important indicator of the achievable energy transfer efficiency in the cutting process. The model was developed by relating the theoretical power needed to melt the volume per unit time and used laser power, where the change of kerf width was modeled using an empirical power model in terms of laser cutting parameters such as laser power, cutting speed, and focus position. The obtained results indicated the dominant effect of the focus position on the change in process efficiency, followed by the cutting speed and laser power. In addition, in order to maximize process efficiency and simultaneously ensure high cut quality without dross formation, a laser cutting optimization problem with constraints was formulated and solved. Also, a multi-objective optimization problem aimed at simultaneous optimization of process efficiency and material removal rate was formulated and solved, where the determined set of Pareto non-dominated solutions was analyzed by using the entropy method and multi-criteria decision analysis method, that is, the Technique for Order of Preference by Similarity to Ideal Solution. The optimization results revealed that in order to enhance process efficiency and material removal rate, while ensuring high cut quality without dross formation, focusing the laser beam deep into the bulk of material is needed with particular trade-offs between laser power and cutting speed levels at high pressure levels of nitrogen.


2020 ◽  
Vol 32 (2) ◽  
pp. 022068 ◽  
Author(s):  
S. Stoyanov ◽  
D. Petring ◽  
D. Arntz-Schroeder ◽  
M. Günder ◽  
A. Gillner ◽  
...  

2020 ◽  
Vol 60 ◽  
pp. 470-480
Author(s):  
Jannik Lind ◽  
Florian Fetzer ◽  
Christian Hagenlocher ◽  
David Blazquez-Sanchez ◽  
Rudolf Weber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document