scholarly journals Some properties of shift operators on algebras generated by $*$-polynomials

2018 ◽  
Vol 10 (1) ◽  
pp. 206-212
Author(s):  
T.V. Vasylyshyn

A $*$-polynomial is a function on a complex Banach space $X,$ which is a sum of so-called $(p,q)$-polynomials. In turn, for non-negative integers $p$ and $q,$ a $(p,q)$-polynomial is a function on $X,$ which is the restriction to the diagonal of some mapping, defined on the Cartesian power $X^{p+q},$ which is linear with respect to every of its first $p$ arguments and antilinear with respect to every of its other $q$ arguments. The set of all continuous $*$-polynomials on $X$ form an algebra, which contains the algebra of all continuous polynomials on $X$ as a proper subalgebra. So, completions of this algebra with respect to some natural norms are wider classes of functions than algebras of holomorphic functions. On the other hand, due to the similarity of structures of $*$-polynomials and polynomials, for the investigation of such completions one can use the technique, developed for the investigation of holomorphic functions on Banach spaces. We investigate the Frechet algebra of functions on a complex Banach space, which is the completion of the algebra of all continuous $*$-polynomials with respect to the countable system of norms, equivalent to norms of the uniform convergence on closed balls of the space. We establish some properties of shift operators (which act as the addition of some fixed element of the underlying space to the argument of a function) on this algebra. In particular, we show that shift operators are well-defined continuous linear operators. Also we prove some estimates for norms of values of shift operators. Using these results, we investigate one special class of functions from the algebra, which is important in the description of the spectrum (the set of all maximal ideals) of the algebra.

1990 ◽  
Vol 32 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Muneo Chō

In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called state if ∥F∥ = F(I) = 1. When x ε X with ∥x∥ = 1, we denoteD(x) = {f ε X*:∥f∥ = f(x) = l}.


2018 ◽  
Vol 70 (3) ◽  
pp. 797-811
Author(s):  
Thiago R Alves ◽  
Geraldo Botelho

Abstract In this paper, we develop a method to construct holomorphic functions that exist only on infinite dimensional spaces. The following types of holomorphic functions f:U→ℂ on some open subsets U of an infinite dimensional complex Banach space are constructed: (1) f is bounded holomorphic on U and is continuously, but not uniformly continuously extended to U¯; (2) f is continuous on U¯ and holomorphic of bounded type on U, but f is unbounded on U; (3) f is holomorphic of bounded type on U and f cannot be continuously extended to U¯. The technique we develop is powerful enough to provide, in the cases (2) and (3) above, large algebraic structures formed by such functions (up to the zero function, of course).


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


2015 ◽  
Vol 30 ◽  
pp. 916-913
Author(s):  
Janko Bracic ◽  
Nadia Boudi

Let X be a complex Banach space and L(X) be the algebra of all bounded linear operators on X. For a given elementary operator P of length 2 on L(X), we determine necessary and sufficient conditions for the existence of a solution of the equation YP=0 in the algebra of all elementary operators on L(X). Our approach allows us to characterize some invertible elementary operators of length 2 whose inverses are elementary operators.


2014 ◽  
Vol 57 (3) ◽  
pp. 665-680
Author(s):  
H. S. MUSTAFAYEV

AbstractLet A be an invertible operator on a complex Banach space X. For a given α ≥ 0, we define the class $\mathcal{D}$Aα(ℤ) (resp. $\mathcal{D}$Aα (ℤ+)) of all bounded linear operators T on X for which there exists a constant CT>0, such that $ \begin{equation*} \Vert A^{n}TA^{-n}\Vert \leq C_{T}\left( 1+\left\vert n\right\vert \right) ^{\alpha }, \end{equation*} $ for all n ∈ ℤ (resp. n∈ ℤ+). We present a complete description of the class $\mathcal{D}$Aα (ℤ) in the case when the spectrum of A is real or is a singleton. If T ∈ $\mathcal{D}$A(ℤ) (=$\mathcal{D}$A0(ℤ)), some estimates for the norm of AT-TA are obtained. Some results for the class $\mathcal{D}$Aα (ℤ+) are also given.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Aftab Khan ◽  
Gul Rahmat ◽  
Akbar Zada

We prove that a discrete semigroup𝕋={T(n):n∈ℤ+}of bounded linear operators acting on a complex Banach spaceXis uniformly exponentially stable if and only if, for eachx∈AP0(ℤ+,X), the sequencen↦∑k=0n‍T(n-k)x(k):ℤ+→Xbelongs toAP0(ℤ+,X). Similar results for periodic discrete evolution families are also stated.


1986 ◽  
Vol 28 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Muneo Chō

Let X be a complex Banach space. We denote by B(X) the algebra of all bounded linear operators on X. Let = (T1, …, Tn) be a commuting n-tuple of operators on X. And let στ() and σ″() by Taylor's joint spectrum and the doubly commutant spectrum of , respectively. We refer the reader to Taylor [8] for the definition of στ() and σ″(), A point z = (z1,…, zn) of ℂn is in the joint approximate point spectrum σπ() of if there exists a sequence {xk} of unit vectors in X such that∥(Ti – zi)xk∥→0 as k → ∞ for i = 1, 2,…, n.


1978 ◽  
Vol 30 (5) ◽  
pp. 1045-1069 ◽  
Author(s):  
I. Gohberg ◽  
P. Lancaster ◽  
L. Rodman

Let be a complex Banach space and the algebra of bounded linear operators on . In this paper we study functions from the complex numbers to of the form


2004 ◽  
Vol 47 (2) ◽  
pp. 298-313 ◽  
Author(s):  
Bamdad R. Yahaghi

AbstractIn this paper we consider collections of compact operators on a real or complex Banach space including linear operators on finite-dimensional vector spaces. We show that such a collection is simultaneously triangularizable if and only if it is arbitrarily close to a simultaneously triangularizable collection of compact operators. As an application of these results we obtain an invariant subspace theorem for certain bounded operators. We further prove that in finite dimensions near reducibility implies reducibility whenever the ground field is or .


1986 ◽  
Vol 28 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B (X) (K(X)). Let σ(A) and σa(A) denote, respectively, the spectrum and approximate point spectrum of an element A of B(X). Setσem(A)and σeb(A) are respectively Schechter's and Browder's essential spectrum of A ([16], [9]). σea (A) is a non-empty compact subset of the set of complex numbers ℂ and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize σab(A) and show that if f is a function analytic in a neighborhood of σ(A), then σab(f(A)) = f(σab(A)). The relation between σa(A) and σeb(A), that is exhibited in this paper, resembles the relation between the σ(A) and the σeb(A), and it is reasonable to call σab(A) Browder's essential approximate point spectrum of A.


Sign in / Sign up

Export Citation Format

Share Document