scholarly journals Effect of magnetic field on the steady nanofluid flow past obstacle

2021 ◽  
Vol 22 (3) ◽  
pp. 535-542
Author(s):  
Yacine Khelili ◽  
Rafik Bouakkaz

The fluid flow and heat transfer of a nanofluid past a circular cylinder in a rectangular duct under a strong transverse magnetic field is studied numerically using a quasitwo-dimensional model. Transition from laminar flow with separation to creeping laminar flow is determined as a function of Hartmann number and the volume fraction of nanoparticle, as are critical Hartmann number, and the heat transfer from the heated wall to the fluid. Downstream cross-stream mixing induced by the cylinder wake was found to increase heat transfer. The successive changes in the flow pattern are studied as a function of the Hartmann number. Suppression of vortex shedding occurs as the Hartmann number increases.

Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 120
Author(s):  
Panteleimon Bakalis ◽  
Polycarpos Papadopoulos ◽  
Panayiotis Vafeas

We studied the laminar fully developed ferrofluid flow and heat transfer phenomena of an otherwise magnetic fluid into a vertical annular duct of circular cross-section and uniform temperatures on walls which were subjected to a transverse external magnetic field. A computational algorithm was used, which coupled the continuity, momentum, energy, magnetization and Maxwell’s equations, accompanied by the appropriate conditions, using the continuity–vorticity–pressure (C.V.P.) method and a non-uniform grid. The results were obtained for different values of field strength and particles’ volumetric concentration, wherein the effects of the magnetic field on the ferrofluid flow and the temperature are revealed. It is shown that the axial velocity distribution is highly affected by the field strength and the volumetric concentration, the axial pressure gradient depends almost linearly on the field strength, while the heat transfer significantly increases due to the generated secondary flow.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sheikholeslami ◽  
R. Ellahi ◽  
C. Fetecau

Impact of nanofluid natural convection due to magnetic field in existence of melting heat transfer is simulated using CVFEM in this research. KKL model is taken into account to obtain properties of CuO–H2O nanofluid. Roles of melting parameter (δ), CuO–H2O volume fraction (ϕ), Hartmann number (Ha), and Rayleigh (Ra) number are depicted in outputs. Results depict that temperature gradient improves with rise of Rayleigh number and melting parameter. Nusselt number detracts with rise of Ha. At the end, a comparison as a limiting case of the considered problem with the existing studies is made and found in good agreement.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Kamil Kahveci ◽  
Semiha Öztuna

Magnetohydrodynamics natural convection in an inclined enclosure with a partition is studied numerically using a differential quadrature method. Governing equations for the fluid flow and heat transfer are solved for the Rayleigh number varying from 104 to 106, the Prandtl numbers (0.1, 1, and 10), four different Hartmann numbers (0, 25, 50, and 100), the inclination angle ranging from 0degto90deg, and the magnetic field with the x and y directions. The results show that the convective flow weakens considerably with increasing magnetic field strength, and the x-directional magnetic field is more effective in reducing the convection intensity. As the inclination angle increases, multicellular flows begin to develop on both sides of the enclosure for higher values of the Hartmann number if the enclosure is under the x-directional magnetic field. The vorticity generation intensity increases with increase of Rayleigh number. On the other hand, increasing Hartmann number has a negative effect on vorticity generation. With an increase in the inclination angle, the intensity of vorticity generation is observed to shift to top left corners and bottom right corners. Vorticity generation loops in each region of enclosure form due to multicelluar flow for an x-directional magnetic field when the inclination angle is increased further. In addition, depending on the boundary layer developed, the vorticity value on the hot wall increases first sharply with increasing y and then begins to decrease gradually. For the high Rayleigh numbers, the average Nusselt number shows an increasing trend as the inclination angle increases and a peak value is detected. Beyond the peak point, the foregoing trend reverses to decrease with the further increase of the inclination angle. The results also show that the Prandtl number has only a marginal effect on the flow and heat transfer.


Author(s):  
Khalid N. Alammar ◽  
Lin-wen Hu

Numerical analysis is performed to examine axisymmetric laminar flow and heat transfer characteristics of colloidal dispersions of nanoparticles in water (nanofluids). Effect of volume fraction on flow and heat transfer characteristics is investigated. Four different materials, Alumina, Copper, Copper Oxide, and Graphite are considered. Heat transfer and property measurements were conducted previously for Alumina nanofluid. The measurements have shown that nanofluids can behave as homogeneous mixtures. It is found that oxide-based nanofluids offer the least heat transfer enhancement compared to elements-based nanofluids. When normalized by friction pressure drop, it is shown that graphite can have the highest effective heat transfer enhancement. For a given volume flow rate, all nanofluids exhibited linear increase in heat transfer enhancement with increasing colloids volume fraction, up to 0.05.


2017 ◽  
Vol 21 (5) ◽  
pp. 2095-2104 ◽  
Author(s):  
Mohammadreza Azimi ◽  
Rouzbeh Riazi

The steady 2-D heat transfer and flow between two non-parallel walls of a graphene oxide nanofluid in presence of uniform magnetic field are investigated in this paper. The analytical solution of the non-linear problem is obtained by Galerkin optimal homotopy asymptotic method. At first a similarity transformation is used to reduce the partial differential equations modeling the flow and heat transfer to ordinary non-linear differential equation systems containing the semi angle between the plate?s parameter, Reynolds number, the magnetic field strength, nanoparticle volume fraction, Eckert and Prandtl numbers. Finally, the obtained analytical results have been compared with results achieved from previous works in some cases.


2021 ◽  
Author(s):  
Yunxian Pei ◽  
Xuelan Zhang ◽  
Liancun Zheng ◽  
Xinzi Wang

Abstract In this paper, we study coupled flow and heat transfer of power-law nanofluids on a non-isothermal rough rotating disk subject to a magnetic field. The problem is formulated in terms of specified curvilinear orthogonal coordinate system. An improved BVP4C algorithm is proposed and numerical solutions are obtained. The influence of volume fraction, types and shapes of nanoparticles, magnetic field and power-law index on the flow and heat transfer behavior are discussed.<br/>Results show that the power-law exponents (PLE), nanoparticle volume fraction (NVF) and magnetic field inclination angle (MFIA) are almost no effects on velocities in wave surface direction, but have small or significant effects on azimuth direction. NVF have remarkable influence on local Nusselt number (LNN) and friction coefficients (FC) in radial and azimuth directions (AD). LNN increases with NVF while FC in AD decrease. The types of nanoparticles, magnetic field strength and inclination have small effects on LNN, but they have remarkable effects on the friction coefficients with positively correlated while the inclination is negatively correlated with heat transfer rate. The size of the nanoparticle shape factor is positively correlated with LNN.


Sign in / Sign up

Export Citation Format

Share Document