scholarly journals Percolation phenomena in the polymer composites with conducting polymer fillers

2021 ◽  
Vol 22 (4) ◽  
pp. 811-816
Author(s):  
G.V. Martyniuk ◽  
O.I. Aksimentyeva

The electrical properties of polymer nanocomposites based on dielectric polymer matrices of different types and electrically conductive polymer fillers – polyortotoluidine, polyorthoanisidine and polyaniline have been studied. It is shown that the concentration dependence of the specific conductivity on the content of fillers has a percolation character with a low “percolation threshold”, which depends on the nature of the polymer matrix and polyaminoarene and is 1.7-10.0 vol.%. The calculated critical parameters of electroconductivity are characteristic of the formation of an infinite 3-dimensional cluster of conductivity and indicate a significant influence of the nature of the components and morphology of the material on the charge transfer processes in such systems.

2021 ◽  
pp. 11-21
Author(s):  
L.V. Solovyanchik ◽  
◽  
S.V. Kondrashov ◽  

Presents a review of the scientific literature on various methods for producing electrically conductive polymer materials and coatings. The prospects of using carbon nanotubes (CNT) to impart high electrical properties to the surface of materials are shown. The mechanism of formation of the structured surface of polymer materials with CNT is described. It is shown that the use of CNT is a promising way to impart electrically conductive and superhydrophobic properties to the surface.


RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


2020 ◽  
Vol 20 (6) ◽  
pp. 942-957
Author(s):  
Yusuf Izmirlioglu ◽  
Esra Erdem

AbstractWe propose a novel formal framework (called 3D-NCDC-ASP) to represent and reason about cardinal directions between extended objects in 3-dimensional (3D) space, using Answer Set Programming (ASP). 3D-NCDC-ASP extends Cardinal Directional Calculus (CDC) with a new type of default constraints, and NCDC-ASP to 3D. 3D-NCDC-ASP provides a flexible platform offering different types of reasoning: Nonmonotonic reasoning with defaults, checking consistency of a set of constraints on 3D cardinal directions between objects, explaining inconsistencies, and inferring missing CDC relations. We prove the soundness of 3D-NCDC-ASP, and illustrate its usefulness with applications.


2014 ◽  
Vol 2 (1) ◽  
Author(s):  
P. Wilson ◽  
C. Lekakou ◽  
J. F. Watts

A laboratory-scale inkjet printing system was designed for printing polymeric inks with the focus on PEDOT:PSS, a transparent, electrically conductive polymer. PEDOT:PSS inks with 0 and 1 wt. % Surfynol were tested rheologically in elongational and shear flows. A process model is presented and validated for the prediction of flow boundary after the ink exits the nozzle, including drop formation. Process optimization involved establishing a process window related to the voltage waveform, substrate temperature, speed and printed line-overlap, aiming at avoiding satellite drops, “coffee cup” rings, the Rayleigh instability, “stacked printed lines,” and discontinuities in the printed lines or films.


2018 ◽  
Vol 27 (13) ◽  
pp. 1830008
Author(s):  
Jin Wu ◽  
Pengfei Dai ◽  
Jie Peng ◽  
Lixia Zheng ◽  
Weifeng Sun

The fundamental theories and primary structures for the multi-branch self-biasing circuits are reviewed in this paper. First, the [Formula: see text]/[Formula: see text] and [Formula: see text]/[Formula: see text] structures illustrating the static current definition mechanism are presented, including the conditions of starting up and entering into a stable equilibrium point. Then, the AC method based on the loop gain evaluation is utilized to analyze different types of circuits. On this basis, the laws which can couple the branches of self-biasing circuits to construct a suitable close feedback loop are summarized. By adopting Taiwan Semiconductor Manufacturing Company (TSMC)’s 0.18[Formula: see text][Formula: see text]m complementary metal–oxide–semiconductor (CMOS) process with 1.8[Formula: see text][Formula: see text] supply voltage, nearly all the circuits mentioned in the paper are simulated in the same branch current condition, which is close to the corresponding calculated results. Therefore, the methods summarized in this paper can be utilized for distinguishing, constructing, and optimizing critical parameters for various structures of the self-biasing circuits.


Author(s):  
D. Jain ◽  
M. Chatterjee ◽  
A. Unemori ◽  
N. Thangam

Abstract The pipe routing problem, wherein layout of one or more pipes has to be decided in a 3-dimensional space while satisfying several different types of constraints, has attracted significant attention recently. This paper describes a knowledge-based automated pipe routing system which generates practical routes that meet several diverse criteria. The system employs intelligent search (with embedded design constraints) upon a compact representation of the free space in a facility, thus avoiding expensive interference checks and adjustments that must be performed in some of the other systems.


2019 ◽  
Vol 1 (11) ◽  
Author(s):  
Richard Asumadu ◽  
Jisheng Zhang ◽  
H. Y. Zhao ◽  
Hubert Osei-Wusuansa ◽  
Alex Baffour Akoto

Sign in / Sign up

Export Citation Format

Share Document