scholarly journals Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus

2016 ◽  
Vol 7 (1) ◽  
pp. 165-178 ◽  
Author(s):  
Victoria L. Pritchard ◽  
Heidi M. Viitaniemi ◽  
R. J. Scott McCairns ◽  
Juha Merilä ◽  
Mikko Nikinmaa ◽  
...  
2016 ◽  
Author(s):  
Victoria L. Pritchard ◽  
Heidi M. Viitaniemi ◽  
R.J. Scott McCairns ◽  
Juha Merilä ◽  
Mikko Nikinmaa ◽  
...  

Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located QTL underlying the variation in gene expression (eQTL) in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis and trans regulatory regions. Trans eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot co-located with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not co-locate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexander Schmitz ◽  
Fuzhong Zhang

Abstract Background Cell-to-cell variation in gene expression strongly affects population behavior and is key to multiple biological processes. While codon usage is known to affect ensemble gene expression, how codon usage influences variation in gene expression between single cells is not well understood. Results Here, we used a Sort-seq based massively parallel strategy to quantify gene expression variation from a green fluorescent protein (GFP) library containing synonymous codons in Escherichia coli. We found that sequences containing codons with higher tRNA Adaptation Index (TAI) scores, and higher codon adaptation index (CAI) scores, have higher GFP variance. This trend is not observed for codons with high Normalized Translation Efficiency Index (nTE) scores nor from the free energy of folding of the mRNA secondary structure. GFP noise, or squared coefficient of variance (CV2), scales with mean protein abundance for low-abundant proteins but does not change at high mean protein abundance. Conclusions Our results suggest that the main source of noise for high-abundance proteins is likely not originating at translation elongation. Additionally, the drastic change in mean protein abundance with small changes in protein noise seen from our library implies that codon optimization can be performed without concerning gene expression noise for biotechnology applications.


2008 ◽  
Vol 19 (6) ◽  
pp. 398-405 ◽  
Author(s):  
Ching Yu Chou ◽  
Li Yu Liu ◽  
Chien Yu Chen ◽  
Cheng Hsien Tsai ◽  
Hsiao Lin Hwa ◽  
...  

2017 ◽  
Vol 303 (8) ◽  
pp. 1061-1079 ◽  
Author(s):  
Julie Ferreira de Carvalho ◽  
Julien Boutte ◽  
Pierre Bourdaud ◽  
Houda Chelaifa ◽  
Kader Ainouche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document