scholarly journals Regulatory architecture of gene expression variation in the threespine stickleback, Gasterosteus aculeatus

2016 ◽  
Author(s):  
Victoria L. Pritchard ◽  
Heidi M. Viitaniemi ◽  
R.J. Scott McCairns ◽  
Juha Merilä ◽  
Mikko Nikinmaa ◽  
...  

Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located QTL underlying the variation in gene expression (eQTL) in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis and trans regulatory regions. Trans eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot co-located with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not co-locate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.

2016 ◽  
Vol 7 (1) ◽  
pp. 165-178 ◽  
Author(s):  
Victoria L. Pritchard ◽  
Heidi M. Viitaniemi ◽  
R. J. Scott McCairns ◽  
Juha Merilä ◽  
Mikko Nikinmaa ◽  
...  

2019 ◽  
Author(s):  
Clément Rougeux ◽  
Martin Laporte ◽  
Pierre-Alexandre Gagnaire ◽  
Louis Bernatchez

ABSTRACTRepeated adaptive divergence in replicates of phenotypic diversification offers a propitious context to identify the molecular bases associated to adaptive divergence. A currently hotly debated topic pertains to the relative role of genomic vs. epigenomic variation in shaping patterns of phenotypic variation at the gene expression level. Here, we combined genomic, epigenomic and transcriptomic information from 64 individuals in order to quantify the relative role of SNPs and DNA methylation variation in the repeated evolution of four limnetic-benthic whitefish species pairs from Europe and North America. We first found evidence for 149 convergent differentially methylated regions (DMRs) between species across continents, which significantly influenced levels of gene expression. Hyper-methylated DMRs in the limnetic species were globally associated to an expression repression relatively to benthic species, and inversely. Furthermore, we identified 108 convergent genetic variants (eQTLs) associated to gene expression differences between species. Gene expression differences were more pronounced in genes harbouring eQTL compared to those associated with DMRs, thus revealing a greater effect of eQTLs on gene expression. Multivariate analyses allowed partitioning the relative contribution of epi-/genomic changes and their association to gene expression variation. Most of the gene expression variation was significantly explained by genomic (4.1%) and putatively genomic-epigenomic interactive variation (46.7%), while “pure” epigenomic variation explained marginally 2.3% of the gene expression variation across continents. This study provides a rare qualitative and quantitative documentation of the relative role of genomic, DNA methylation and their interaction in shaping patterns of convergent gene expression during the process of ecological speciation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexander Schmitz ◽  
Fuzhong Zhang

Abstract Background Cell-to-cell variation in gene expression strongly affects population behavior and is key to multiple biological processes. While codon usage is known to affect ensemble gene expression, how codon usage influences variation in gene expression between single cells is not well understood. Results Here, we used a Sort-seq based massively parallel strategy to quantify gene expression variation from a green fluorescent protein (GFP) library containing synonymous codons in Escherichia coli. We found that sequences containing codons with higher tRNA Adaptation Index (TAI) scores, and higher codon adaptation index (CAI) scores, have higher GFP variance. This trend is not observed for codons with high Normalized Translation Efficiency Index (nTE) scores nor from the free energy of folding of the mRNA secondary structure. GFP noise, or squared coefficient of variance (CV2), scales with mean protein abundance for low-abundant proteins but does not change at high mean protein abundance. Conclusions Our results suggest that the main source of noise for high-abundance proteins is likely not originating at translation elongation. Additionally, the drastic change in mean protein abundance with small changes in protein noise seen from our library implies that codon optimization can be performed without concerning gene expression noise for biotechnology applications.


2008 ◽  
Vol 19 (6) ◽  
pp. 398-405 ◽  
Author(s):  
Ching Yu Chou ◽  
Li Yu Liu ◽  
Chien Yu Chen ◽  
Cheng Hsien Tsai ◽  
Hsiao Lin Hwa ◽  
...  

2017 ◽  
Vol 303 (8) ◽  
pp. 1061-1079 ◽  
Author(s):  
Julie Ferreira de Carvalho ◽  
Julien Boutte ◽  
Pierre Bourdaud ◽  
Houda Chelaifa ◽  
Kader Ainouche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document