scholarly journals RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects

2019 ◽  
pp. g3.200996.2018
Author(s):  
Dorothea Schultheis ◽  
Jonas Schwirz ◽  
Manfred Frasch
Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3331-3338 ◽  
Author(s):  
Beatriz San Martin ◽  
Mar Ruiz-Gómez ◽  
Matthias Landgraf ◽  
Michael Bate

The embryonic Drosophila midgut is enclosed by a latticework of longitudinal and circular visceral muscles. We find that these muscles are syncytial. Like the somatic muscles they are generated by the prior segregation of two populations of cells: fusion-competent myoblasts and founder myoblasts specialised to seed the formation of particular muscles. Visceral muscle founders are of two classes: those that seed circular muscles and those that seed longitudinal muscles. These specialisations are revealed in mutant embryos where myoblast fusion fails. In the absence of fusion, founders make mononucleate circular or longitudinal fibres, while their fusion-competent neighbours remain undifferentiated.


2018 ◽  
Author(s):  
Dorothea Schultheis ◽  
Jonas Schwirz ◽  
Manfred Frasch

AbstractIn a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.


2014 ◽  
Vol 226 (03) ◽  
Author(s):  
F Ponthan ◽  
D Pal ◽  
J Vormoor ◽  
O Heidenreich
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document