scholarly journals Functional Analysis of Drosophila melanogaster Gene Regulatory Sequences by Transgene Coplacement

Genetics ◽  
2004 ◽  
Vol 168 (1) ◽  
pp. 559-561 ◽  
Author(s):  
John Parsch
1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2019 ◽  
Author(s):  
Joanna Mitchelmore ◽  
Nastasiya Grinberg ◽  
Chris Wallace ◽  
Mikhail Spivakov

AbstractIdentifying DNA cis-regulatory modules (CRMs) that control the expression of specific genes is crucial for deciphering the logic of transcriptional control. Natural genetic variation can point to the possible gene regulatory function of specific sequences through their allelic associations with gene expression. However, comprehensive identification of causal regulatory sequences in brute-force association testing without incorporating prior knowledge is challenging due to limited statistical power and effects of linkage disequilibrium. Sequence variants affecting transcription factor (TF) binding at CRMs have a strong potential to influence gene regulatory function, which provides a motivation for prioritising such variants in association testing. Here, we generate an atlas of CRMs showing predicted allelic variation in TF binding affinity in human lymphoblastoid cell lines (LCLs) and test their association with the expression of their putative target genes inferred from Promoter Capture Hi-C and immediate linear proximity. We reveal over 1300 CRM TF-binding variants associated with target gene expression, the majority of them undetected with standard association testing. A large proportion of CRMs showing associations with the expression of genes they contact in 3D localise to the promoter regions of other genes, supporting the notion of ‘epromoters’: dual-action CRMs with promoter and distal enhancer activity.


2019 ◽  
Author(s):  
Pedro Gaspar ◽  
Saad Arif ◽  
Lauren Sumner-Rooney ◽  
Maike Kittelmann ◽  
Andrew J. Bodey ◽  
...  

AbstractThe compound eyes of insects exhibit striking variation in size, reflecting adaptation to different lifestyles and habitats. However, the genetic and developmental bases of variation in insect eye size is poorly understood, which limits our understanding of how these important morphological differences evolve. To address this, we further explored natural variation in eye size within and between four species of the Drosophila melanogaster species subgroup. We found extensive variation in eye size among these species, and flies with larger eyes generally had a shorter inter-ocular distance and vice versa. We then carried out quantitative trait loci (QTL) mapping of intra-specific variation in eye size and inter-ocular distance in both D. melanogaster and D. simulans. This revealed that different genomic regions underlie variation in eye size and inter-ocular distance in both species, which we corroborated by introgression mapping in D. simulans. This suggests that although there is a trade-off between eye size and inter-ocular distance, variation in these two traits is likely to be caused by different genes and so can be genetically decoupled. Finally, although we detected QTL for intra-specific variation in eye size at similar positions in D. melanogaster and D. simulans, we observed differences in eye fate commitment between strains of these two species. This indicates that different developmental mechanisms and therefore, most likely, different genes contribute to eye size variation in these species. Taken together with the results of previous studies, our findings suggest that the gene regulatory network that specifies eye size has evolved at multiple genetic nodes to give rise to natural variation in this trait within and among species.


1992 ◽  
Vol 101 (4) ◽  
pp. 795-799
Author(s):  
C. Saulnier-Michel ◽  
M. Fromont-Racine ◽  
R. Pictet

RW cells are pancreatic endocrine RIN cells that have been stably transfected with a chimeric gene that places the expression of the dominant selection gpt gene under the control of the insulin gene regulatory sequences. These RW cells were examined for hormone content using immunocytochemistry. This analysis shows that: first, there are cells that are negative for insulin although they were cultured under selective pressure. Second, there is a higher proportion of somatostatin-producing cells than in the parental RIN cells; these somatostatin cells form two populations: one of cells containing only somatostatin and, surprisingly, one made of cells containing both insulin and somatostatin. Thus: (1) expression of the transfected and endogenous insulin regulatory sequences is not regulated in a coordinate fashion; (2) the presence of both hormones in the same cell suggests that the regulation of the expression of insulin and somatostatin genes and the differentiation pathway of the two respective cell types may be closely related.


2018 ◽  
Vol 62 (11-12) ◽  
pp. 767-774 ◽  
Author(s):  
Priyanjali Ghosh ◽  
Charles G. Sagerström

Hox proteins have long been known to function as transcriptional regulators during development of the vertebrate hindbrain. In particular, these factors are thought to play key roles in assigning distinct fates to the rhombomere segments arising in the embryonic hindbrain. However, it remains uncertain exactly how the Hox proteins fit into the regulatory networks controlling hindbrain formation. For instance, it is unclear if Hox proteins fulfill similar roles in different rhombomeres and if they are absolutely required for all aspects of each rhombomere fate. Recent advances in the discovery, characterization and functional analysis of hindbrain gene regulatory networks is now allowing us to revisit these types of questions. In this review we focus on recent data on the formation of caudal rhombomeres in vertebrates, with a specific focus on zebrafish, to derive an up-to-date view of the role for Hox proteins in the regulation of hindbrain development.


Author(s):  
Masanao Miwa ◽  
Shuji Hanai ◽  
Palmiro Poltronieri ◽  
Masahiro Uchida ◽  
Kazuhiko Uchida

DNA Repair ◽  
2008 ◽  
Vol 7 (1) ◽  
pp. 10-19 ◽  
Author(s):  
Rachel Brough ◽  
Debbie Wei ◽  
Sophie Leulier ◽  
Christopher J. Lord ◽  
Yikang S. Rong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document