scholarly journals Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

Genetics ◽  
2011 ◽  
Vol 189 (3) ◽  
pp. 1117-1120 ◽  
Author(s):  
Dean A. Baker ◽  
Steven Russell
2017 ◽  
Vol 284 (1854) ◽  
pp. 20162806 ◽  
Author(s):  
Jessica K. Abbott ◽  
Anna K. Nordén ◽  
Bengt Hansson

Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence.


1993 ◽  
Vol 4 (6) ◽  
pp. 204-209 ◽  
Author(s):  
Wolfgang Schmid ◽  
Doris Nitsch ◽  
Michael Boshart ◽  
Günther Schütz

2012 ◽  
Vol 5 (1) ◽  
pp. 42 ◽  
Author(s):  
Marcelo de Bello Cioffi ◽  
Eduard Kejnovský ◽  
Vinicius Marquioni ◽  
Juliana Poltronieri ◽  
Wagner F Molina ◽  
...  

1998 ◽  
Vol 273 (49) ◽  
pp. 32988-32994 ◽  
Author(s):  
Guozhi Xiao ◽  
Dian Wang ◽  
M. Douglas Benson ◽  
Gerard Karsenty ◽  
Renny T. Franceschi

2012 ◽  
Vol 5 (1) ◽  
pp. 28 ◽  
Author(s):  
Marcelo de Bello Cioffi ◽  
Eduard Kejnovský ◽  
Vinicius Marquioni ◽  
Juliana Poltronieri ◽  
Wagner Molina ◽  
...  

2021 ◽  
Vol 376 (1833) ◽  
pp. 20200108 ◽  
Author(s):  
Lukáš Kratochvíl ◽  
Tony Gamble ◽  
Michail Rovatsos

Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


Sign in / Sign up

Export Citation Format

Share Document