scholarly journals Correction: The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system

2012 ◽  
Vol 5 (1) ◽  
pp. 42 ◽  
Author(s):  
Marcelo de Bello Cioffi ◽  
Eduard Kejnovský ◽  
Vinicius Marquioni ◽  
Juliana Poltronieri ◽  
Wagner F Molina ◽  
...  
2012 ◽  
Vol 5 (1) ◽  
pp. 28 ◽  
Author(s):  
Marcelo de Bello Cioffi ◽  
Eduard Kejnovský ◽  
Vinicius Marquioni ◽  
Juliana Poltronieri ◽  
Wagner Molina ◽  
...  

2017 ◽  
Vol 284 (1854) ◽  
pp. 20162806 ◽  
Author(s):  
Jessica K. Abbott ◽  
Anna K. Nordén ◽  
Bengt Hansson

Many separate-sexed organisms have sex chromosomes controlling sex determination. Sex chromosomes often have reduced recombination, specialized (frequently sex-specific) gene content, dosage compensation and heteromorphic size. Research on sex determination and sex chromosome evolution has increased over the past decade and is today a very active field. However, some areas within the field have not received as much attention as others. We therefore believe that a historic overview of key findings and empirical discoveries will put current thinking into context and help us better understand where to go next. Here, we present a timeline of important conceptual and analytical models, as well as empirical studies that have advanced the field and changed our understanding of the evolution of sex chromosomes. Finally, we highlight gaps in our knowledge so far and propose some specific areas within the field that we recommend a greater focus on in the future, including the role of ecology in sex chromosome evolution and new multilocus models of sex chromosome divergence.


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200108 ◽  
Author(s):  
Lukáš Kratochvíl ◽  
Tony Gamble ◽  
Michail Rovatsos

Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


2021 ◽  
Vol 376 (1833) ◽  
pp. 20200105 ◽  
Author(s):  
Mitsuaki Ogata ◽  
Kazuo Suzuki ◽  
Yoshiaki Yuasa ◽  
Ikuo Miura

Sex chromosomes generally evolve from a homomorphic to heteromorphic state. Once a heteromorphic system is established, the sex chromosome system may remain stable for an extended period. Here, we show the opposite case of sex chromosome evolution from a heteromorphic to a homomorphic system in the Japanese frog Glandirana rugosa. One geographic group, Neo-ZW, has ZZ-ZW type heteromorphic sex chromosomes. We found that its western edge populations, which are geographically close to another West-Japan group with homomorphic sex chromosomes of XX-XY type, showed homozygous genotypes of sex-linked genes in both sexes. Karyologically, no heteromorphic sex chromosomes were identified. Sex-reversal experiments revealed that the males were heterogametic in sex determination. In addition, we identified another similar population around at the southwestern edge of the Neo-ZW group in the Kii Peninsula: the frogs had homomorphic sex chromosomes under male heterogamety, while shared mitochondrial haplotypes with the XY group, which is located in the east and bears heteromorphic sex chromosomes. In conclusion, our study revealed that the heteromorphic sex chromosome systems independently reversed back to or turned over to a homomorphic system around each of the western and southwestern edges of the Neo-ZW group through hybridization with the West-Japan group bearing homomorphic sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.


2008 ◽  
Vol 16 (6) ◽  
pp. 815-825 ◽  
Author(s):  
Pedro Alonzo Martinez ◽  
Tariq Ezaz ◽  
Nicole Valenzuela ◽  
Arthur Georges ◽  
Jennifer A. Marshall Graves

2021 ◽  
Vol 376 (1832) ◽  
pp. 20200094 ◽  
Author(s):  
Nicolas Perrin

Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Basanta Bista ◽  
Nicole Valenzuela

Sex chromosome evolution remains an evolutionary puzzle despite its importance in understanding sexual development and genome evolution. The seemingly random distribution of sex-determining systems in reptiles offers a unique opportunity to study sex chromosome evolution not afforded by mammals or birds. These reptilian systems derive from multiple transitions in sex determination, some independent, some convergent, that lead to the birth and death of sex chromosomes in various lineages. Here we focus on turtles, an emerging model group with growing genomic resources. We review karyotypic changes that accompanied the evolution of chromosomal systems of genotypic sex determination (GSD) in chelonians from systems under the control of environmental temperature (TSD). These transitions gave rise to 31 GSD species identified thus far (out of 101 turtles with known sex determination), 27 with a characterized sex chromosome system (13 of those karyotypically). These sex chromosomes are varied in terms of the ancestral autosome they co-opted and thus in their homology, as well as in their size (some are macro-, some are micro-chromosomes), heterogamety (some are XX/XY, some ZZ/ZW), dimorphism (some are virtually homomorphic, some heteromorphic with larger-X, larger W, or smaller-Y), age (the oldest system could be ~195 My old and the youngest < 25 My old). Combined, all data indicate that turtles follow some tenets of classic theoretical models of sex chromosome evolution while countering others. Finally, although the study of dosage compensation and molecular divergence of turtle sex chromosomes has lagged behind research on other aspects of their evolution, this gap is rapidly decreasing with the acceleration of ongoing research and growing genomic resources in this group.


Sign in / Sign up

Export Citation Format

Share Document