scholarly journals Biology of the Caenorhabditis elegans Germline Stem Cell System

Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1145-1188 ◽  
Author(s):  
E. Jane Albert Hubbard ◽  
Tim Schedl

Stem cell systems regulate tissue development and maintenance. The germline stem cell system is essential for animal reproduction, controlling both the timing and number of progeny through its influence on gamete production. In this review, we first draw general comparisons to stem cell systems in other organisms, and then present our current understanding of the germline stem cell system in Caenorhabditis elegans. In contrast to stereotypic somatic development and cell number stasis of adult somatic cells in C. elegans, the germline stem cell system has a variable division pattern, and the system differs between larval development, early adult peak reproduction and age-related decline. We discuss the cell and developmental biology of the stem cell system and the Notch regulated genetic network that controls the key decision between the stem cell fate and meiotic development, as it occurs under optimal laboratory conditions in adult and larval stages. We then discuss alterations of the stem cell system in response to environmental perturbations and aging. A recurring distinction is between processes that control stem cell fate and those that control cell cycle regulation. C. elegans is a powerful model for understanding germline stem cells and stem cell biology.

2019 ◽  
Author(s):  
Jian Chen ◽  
Ariz Mohammad ◽  
Nanette Pazdernik ◽  
Huiyan Huang ◽  
Beth Bowman ◽  
...  

AbstractStem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, the C. elegans Notch pathway sequence-specific DNA binding protein, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region.Author SummaryStem cell systems are central to tissue development, homeostasis and regeneration, where niche to stem cell signaling pathways promote the stem cell fate/self-renewal and inhibit differentiation. The evolutionarily conserved GLP-1 Notch signaling pathway in the C. elegans germline is an experimentally tractable system, allowing dissection of control of the stem cell fate and inhibition of meiotic development. However, as in many systems, the primary molecular targets of the signaling pathway in stem cells is incompletely known, as are secondary molecular targets, and this knowledge is essential for a deep understanding of stem cell systems. Here we focus on the identification of the primary transcriptional targets of the GLP-1 signaling pathway that promotes the stem cell fate, employing unbiased multilevel genomic approaches. We identify only lst-1 and sygl-1, two of a number of previously reported targets, as likely the sole primary mRNA transcriptional targets of GLP-1 signaling that promote the germline stem cell fate. We also identify secondary GLP-1 signaling RNA and protein targets, whose expression shows dependence on lst-1 and sygl-1, where the protein targets reinforce the importance of posttranscriptional regulation in control of the stem cell fate.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-740
Author(s):  
E Jane Hubbard

Abstract Failure to maintain stem cells with age is associated with conditions such as tissue degeneration and increased susceptibility to tissue damage. We use the C. elegans germline stem cell system as a model to study stem cell aging. This system combines a well-established model for aging with an accessible stem cell system, providing a unique opportunity to understand how aging influences stem cell dynamics. The germline stem/progenitor pool in in C. elegans becomes depleted over time. At the cellular level, aging influences both the size of the stem cell pool and the proliferation rate of stem cells. The flux of differentiated cells also affects how aging impacts the pool. This depletion is partially alleviated in mutants with reduced insulin/IGF-like signaling via inhibition of the transcription factor DAF-16/FOXO. In this role, DAF-16 does not act in the germ line, and its anatomical requirements are different from its previously described roles in larval germline proliferation, dauer control, and lifespan regulation. We found that DAF-16/FOXO is required in certain somatic cells in the proximal part of the reproductive system to regulate the stem cell pool. We also find that the degree to which various age-defying perturbations affect lifespan does not correlate with their effect on germline stem cell maintenance. We are investigating additional aspects of aging germline stem cells using this system.


Coral Reefs ◽  
2015 ◽  
Vol 34 (2) ◽  
pp. 639-653 ◽  
Author(s):  
Shinya Shikina ◽  
Yi-Jou Chung ◽  
Hsiang-Ming Wang ◽  
Yi-Ling Chiu ◽  
Zih-Fang Shao ◽  
...  

2016 ◽  
Author(s):  
Dong Suk Yoon ◽  
Dong Seok Cha ◽  
Myon-Hee Lee

ABSTRACTNotch signaling is a highly conserved cell signaling system in most multicellular organisms and plays a critical role in animal development. In various tumor cells, Notch signaling is elevated and has been considered as an important target in cancer treatments. In C. elegans, GLP-1 (one of two C. elegans Notch receptors) activity is required for cell fate specification in germline and somatic tissues. In this study, we have identified div-1 gene as a positive regulator for GLP-1/Notch-mediated cellular events. C. elegans div-1 encodes the B subunit of the DNA polymerase alpha-primase complex and is highly expressed in proliferative germ cells. Functional analyses demonstrated that i) DIV-1 is required for the robust proliferation typical of the germline, ii) loss of DIV-1 enhances and suppresses specific phenotypes that are associated with reduced and elevated GLP-1/Notch activity in germline and somatic tissues, and iii) DIV-1 works together with FBF/PUF proteins, downstream regulators of GLP-1/Notch signaling, to promote germline stem cell (GSC) maintenance and germline proliferation. To maintain GSCs and proliferative cell fate, GLP-1/Notch activity must remain above a threshold for proliferation/differentiation decision. Our results propose that DIV-1 may control the level of threshold for GLP-1/Notch-mediated germline proliferation. PolA2, a mammalian homolog of the C. elegans DIV-1, has been emerged as a therapeutic target for non-small cell lung cancer (NSCLC). Notably, Notch signaling is altered in approximately one third of NSCLCs. Therefore, the discovery of the DIV-1 effect on GLP-1/Notch-mediated cellular events has implications for our understanding of vertebrate PolA2 protein and its influence on stem cell maintenance and tumorigenesis.


2012 ◽  
Vol 22 (6) ◽  
pp. 515-521 ◽  
Author(s):  
Laixin Xia ◽  
Xiudeng Zheng ◽  
Wenjing Zheng ◽  
Guoqiang Zhang ◽  
Hailong Wang ◽  
...  

Cell Research ◽  
2005 ◽  
Vol 15 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Shree Ram SINGH ◽  
Xiu CHEN ◽  
Steven X HOU

2013 ◽  
Vol 78 (6) ◽  
pp. 585-591 ◽  
Author(s):  
E. Y. Yakushev ◽  
O. A. Sokolova ◽  
V. A. Gvozdev ◽  
M. S. Klenov

Sign in / Sign up

Export Citation Format

Share Document