scholarly journals The Impact of Climate Change on Marine Recreational Fishing with Implications for the Social Cost of Carbon

2017 ◽  
Vol 3 (2) ◽  
Author(s):  
John Whitehead ◽  
Daniel Willard
2013 ◽  
Vol 51 (3) ◽  
pp. 860-872 ◽  
Author(s):  
Robert S Pindyck

Very little. A plethora of integrated assessment models (IAMs) have been constructed and used to estimate the social cost of carbon (SCC) and evaluate alternative abatement policies. These models have crucial flaws that make them close to useless as tools for policy analysis: certain inputs (e.g., the discount rate) are arbitrary, but have huge effects on the SCC estimates the models produce; the models' descriptions of the impact of climate change are completely ad hoc, with no theoretical or empirical foundation; and the models can tell us nothing about the most important driver of the SCC, the possibility of a catastrophic climate outcome. IAM-based analyses of climate policy create a perception of knowledge and precision, but that perception is illusory and misleading. (JEL C51, Q54, Q58)


2021 ◽  
Author(s):  
Richard Tol

Abstract Some claim that as knowledge about climate change accumulates, the social cost of carbon increases. A meta-analysis of published estimates shows that this is not the case. Correcting for inflation and emission year and controlling for the discount rate, kernel density decomposition reveals a stationary distribution. Actual carbon prices are almost everywhere below the estimated social cost of carbon.


2014 ◽  
Vol 104 (5) ◽  
pp. 544-546 ◽  
Author(s):  
Martin L. Weitzman

At high enough greenhouse gas concentrations, climate change might conceivably cause catastrophic damages with small but non-negligible probabilities. If the bad tail of climate damages is sufficiently fat, and if the coefficient of relative risk aversion is greater than one, the catastrophe-reducing insurance aspect of mitigation investments could in theory have a strong influence on raising the social cost of carbon. In this paper I exposit the influence of fat tails on climate change economics in a simple stark formulation focused on the social cost of carbon. I then attempt to place the basic underlying issues within a balanced perspective.


2020 ◽  
Author(s):  
Jarmo Kikstra ◽  
Paul Waidelich ◽  
James Rising ◽  
Dmitry Yumashev ◽  
Chris Hope ◽  
...  

<p>A key statistic describing climate change impacts is the “social cost of carbon” (SCC), the total market and non-market costs to society incurred by releasing a ton of CO<sub>2</sub>. Estimates of the SCC have risen in recent years, with improved understanding of the risk of climate change to various sectors, including agriculture [1], mortality [2], and economic growth [3].</p><p>The total risks of climate impacts also depend on the representation of human-climate feedbacks such as the effect of climate impacts on GDP growth and extremes (rather than a focus only on means), but this relationship has not been extensively studied [4-7]. In this paper, we update the widely used PAGE IAM to investigate how SCC distributions change with the inclusion of climate-economy feedbacks and temperature variability. The PAGE model has recently been improved with representations of permafrost thawing and surface albedo feedback, CMIP6 scenarios, and empirical market damage estimates [8]. We study how changes from PAGE09 to PAGE-ICE affected the SCC, increasing it up to 75%, with a SCC distribution with a mean around $300 for the central SSP2-4.5 scenario. Then we model the effects of different levels of the persistence of damages, for which the persistence parameter is shown to have enormous effects. Adding stochastic interannual regional temperature variations based on an analysis of observational temperature data [9] can increase the hazard rate of economic catastrophes changes the form of the distribution of SCC values. Both the effects of temperature variability and climate-economy feedbacks are region-dependent. Our results highlight the importance of feedbacks and extremes for the understanding of the expected value, distribution, and heterogeneity of climate impacts.</p><p> </p><p>[1] Moore, F. C., Baldos, U., Hertel, T., & Diaz, D. (2017). New science of climate change impacts on agriculture implies higher social cost of carbon. Nature communications, 8(1), 1607.</p><p>[2] Carleton, et al. (2018). Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits.</p><p>[3] Ricke, K., Drouet, L., Caldeira, K., & Tavoni, M. (2018). Country-level social cost of carbon. Nature Climate Change, 8(10), 895.</p><p>[4] Burke, M., et al. (2016). Opportunities for advances in climate change economics. Science, 352(6283), 292–293. https://doi.org/10.1126/science.aad9634</p><p>[5] National Academies of Sciences Engineering and Medicine. (2017). Valuing climate damages: updating estimation of the social cost of carbon dioxide. National Academies Press.</p><p>[6] Stiglitz, J. E., et al.. (2017). Report of the high-level commission on carbon prices.</p><p>[7] Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Vol. 9781107025). https://doi.org/10.1017/CBO9781139177245.009</p><p>[8] Yumashev, D., et al. (2019). Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09863-x</p><p>[9] Brierley, C. M., Koch, A., Ilyas, M., Wennyk, N., & Kikstra, J. S. (2019, March 12). Half the world's population already experiences years 1.5°C warmer than preindustrial. https://doi.org/10.31223/osf.io/sbc3f</p>


Author(s):  
Shyam S. Salim ◽  
Lina Joseph ◽  
Harsha Elizabeth James ◽  
A. M. Shinu ◽  
N. R. Athira ◽  
...  

Fisheries and allied sectors provide means of livelihood to millions of people around the world. In India more than 14.5 million individuals depend on fisheries for their livelihood, with Gujarat, Tamil Nadu and Kerala being the main three marine fish producing states of the country. The social and economic contribution of fisheries as a sector cannot be ignored or go unnoticed. Similarly the impact of climate change on fisheries and its resultant impact on the livelihood of fisheries dependent communities cannot be ignored. To address these pertinent issues, we first need to understand the impact of climate change on fisheries and the need of alternative livelihood options from the perspective of the direct stakeholders i.e. fishermen. This study is an endeavour to look at the need of Alternative livelihood options (ALOs) because of climate change among the coastal communities in Poonthura and Elamkunnapuzha villages of Thiruvananthapuram and Ernakulum respectively. Among the 222 marine fishing villages of Kerala, Poonthura and Elamkunnapuzha are the major fishing villages from the South West hotspot locales of India. The examination investigated different socioeconomic aspects, for example, fishing  activity,  basic  household  data,  economic  as  well  as  historic  and  cultural dependence on fishing, employment and occupational structure, income  distribution  and  assets,  physical  capital,  financial  capital,  social capital, and exposure and awareness  of the fishermen families to climate change by interviewing 1259 fishermen from Poonthura and Elamkunnapuzha. The study conducted in the most climate change vulnerable marine hotspots of Kerala (Elamkunnapuzha and Poonthura) explains the problems and prospects of the inhabitants in the sector and the importance of Alternative Livelihood Options (ALOs) in climate change adaptation.


Sign in / Sign up

Export Citation Format

Share Document