scholarly journals DYNAMICS OF ICE SHEET SURFACE OVER SUBGLACIAL LAKES IN ANTARCTICA

2015 ◽  
Vol 52 (4) ◽  
pp. 97
Author(s):  
V. M. Kotlyakov ◽  
L. N. Vasiliev ◽  
A. B. Kachalin ◽  
M. Yu. Moskalevsky ◽  
A. S. Tyuflin
1998 ◽  
Vol 44 (146) ◽  
pp. 1-8 ◽  
Author(s):  
Martin J. Siegert ◽  
Jeffrey K. Ridley

AbstractLarge subglacial lakes manifest themselves as flat regions on the ice surface. ERS-1 satellite radar altimetry of the Dome C region of East Antarctica was analyzed to correlate unusually flat areas on the ice surface with known locations of subglacial lakes identified from airborne radio-echo sounding (RES) data. The mean length of subglacial lakes which have an expression in the ice-sheet surface was ~8.3 km, whilst those that did not exhibit a surface morphological manifestation had a mean length of ~3.3 km. Thus, lakes up to about 4 km in length arc unlikely to be detected from satellite radar altimetry of the ice surface. Given that the spacing of radio-echo flight tracks within the SPRI-NSF-TUD Antarctic database is 50-100 km in many areas, a number of subglacial lakes probably lie undetected beneath the ice sheet. RES information from two large, flat surface regions within Dome C, and a further flat area located at 80° S, 127° E, indicates the absence of subglacial lakes beneath the ice-surface features. However, these areas are characterised by relatively strong radio-echo returns which may indicate the presence of water-saturated basal sediments. We suggest that (1) blankets of water-saturated basal sediments may cause similar surface morphological features to those produced by subglacial lakes; and (2) misidentification of subglacial lakes from satellite altimeter observations of the ice-sheet surface is possible without the support of RES information relating to the ice-sheet base. Furthermore, our study indicates a lack of subglacial lake signals from RES data over relatively thick regions of East Antarctica such as the Adventure Subglacial Trough. We conclude that subglacial water produced in such regions may be transported by a basal hydrological system, driven by overburden pressure, to less thick regions of the ice sheet where subglacial lakes have been identified.


1998 ◽  
Vol 44 (146) ◽  
pp. 1-8 ◽  
Author(s):  
Martin J. Siegert ◽  
Jeffrey K. Ridley

AbstractLarge subglacial lakes manifest themselves as flat regions on the ice surface. ERS-1 satellite radar altimetry of the Dome C region of East Antarctica was analyzed to correlate unusually flat areas on the ice surface with known locations of subglacial lakes identified from airborne radio-echo sounding (RES) data. The mean length of subglacial lakes which have an expression in the ice-sheet surface was ~8.3 km, whilst those that did not exhibit a surface morphological manifestation had a mean length of ~3.3 km. Thus, lakes up to about 4 km in length arc unlikely to be detected from satellite radar altimetry of the ice surface. Given that the spacing of radio-echo flight tracks within the SPRI-NSF-TUD Antarctic database is 50-100 km in many areas, a number of subglacial lakes probably lie undetected beneath the ice sheet. RES information from two large, flat surface regions within Dome C, and a further flat area located at 80° S, 127° E, indicates the absence of subglacial lakes beneath the ice-surface features. However, these areas are characterised by relatively strong radio-echo returns which may indicate the presence of water-saturated basal sediments. We suggest that (1) blankets of water-saturated basal sediments may cause similar surface morphological features to those produced by subglacial lakes; and (2) misidentification of subglacial lakes from satellite altimeter observations of the ice-sheet surface is possible without the support of RES information relating to the ice-sheet base. Furthermore, our study indicates a lack of subglacial lake signals from RES data over relatively thick regions of East Antarctica such as the Adventure Subglacial Trough. We conclude that subglacial water produced in such regions may be transported by a basal hydrological system, driven by overburden pressure, to less thick regions of the ice sheet where subglacial lakes have been identified.


2021 ◽  
Author(s):  
Philip Hughes ◽  
Neil Glasser ◽  
David Fink ◽  
Jason Dortch ◽  
Reka Fülöp ◽  
...  

<p>Cosmogenic <sup>10</sup>Be and <sup>26</sup>Al exposure ages from 20 erratic samples collected from Cadair Idris (893 m), a mountain in southern Snowdonia, Wales, provide evidence for the timing of deglaciation from summits to cirques at the end of the Late Pleistocene. The summit of the mountain is characterised by intensely modified frost-shattered surfaces that have long been identified as a representing a former nunatak. Numerous glacially-transported quartz boulders on the highest ground indicate that ice overran the summit at some point in the Pleistocene. Two quartz boulders, one with preserved striations, sampled at c. 856 m near the summit of Cadair Idris yielded consistent <sup>10</sup>Be and <sup>26</sup>Al paired exposure ages of 75 ka to 60 ka (using a high-latitude sea level <sup>10</sup>Be spallation production rate of 4.20 at/g/y, scaled by the Lal/Stone scheme). A glacially polished bedrock quartzite outcrop at 735 m gave an age of 17.5 ka. Immediately below this, cirque and down-valley recessional moraine ages, covering an elevation of 480 m to 350 m ranged from 10 to 15 ka respectively.</p><p>These results confirm that Cadair Idris was overridden by the Welsh Ice Cap during marine isotope stage (MIS) 4, when ice was thicker than at the global last glacial maximum (LGM) in MIS 2. This is consistent with findings from northern Snowdonia. The highest Welsh summits, including Cadair Idris, emerged above a thinning Welsh Ice Cap (British Irish Ice Sheet) during the transition from MIS 4 to 3. The summit area above ~800 m then stood as nunataks above the LGM ice sheet surface in MIS 2. The Welsh Ice Cap then rapidly thinned over Cadair Idris at ~20-17 ka based on ages from high-level ice-moulded bedrockThis is supported by more new ages from high-level paired erratics and bedrock samples on several other mountains throughout Snowdonia, leading to a phase of alpine-style deglaciation. Valley glaciers initiated their retreat up-valley from ~17 to 14 ka after Heinrich Event 1. A later phase of glacier stabilisation or still stand formation produced classic cirque moraines near the rim of a present cirque lake basin (480 m elevation) yielding <sup>10</sup>Be ages of 13-10 ka during the Younger Dryas.</p>


1999 ◽  
Vol 45 (150) ◽  
pp. 201-213 ◽  
Author(s):  
E.M. Shoemaker

AbstractThe effect of subglacial lakes upon ice-sheet topography and the velocity patterns of subglacial water-sheet floods is investigated. A subglacial lake in the combined Michigan–Green Bay basin, Great Lakes, North America, leads to: (1) an ice-sheet lobe in the lee of Lake Michigan; (2) a change in orientations of flood velocities across the site of a supraglacial trough aligned closely with Green Bay, in agreement with drumlin orientations; (3) low water velocities in the lee of Lake Michigan where drumlins are absent; and (4) drumlinization occurring in regions of predicted high water velocities. The extraordinary divergence of drumlin orientations near Lake Ontario is explained by the presence of subglacial lakes in the Ontario and Erie basins, along with ice-sheet displacements of up to 30 km in eastern Lake Ontario. The megagrooves on the islands in western Lake Erie are likely to be the product of the late stage of a water-sheet flood when outflow from eastern Lake Ontario was dammed by displaced ice and instead flowed westward along the Erie basin. The Finger Lakes of northern New York state, northeastern U.S.A., occur in a region of likely ice-sheet grounding where water sheets became channelized. Green Bay and Grand Traverse Bay are probably the products of erosion along paths of strongly convergent water-sheet flow.


Author(s):  
Robert S. Fausto ◽  
Dirk Van As ◽  
Jens A. Antoft ◽  
Jason E. Box ◽  
William Colgan

The Greenland ice sheet is an excellent observatory for global climate change. Meltwater from the 1.8 million km2 large ice sheet infl uences oceanic temperature and salinity, nutrient fl uxes and global sea level (IPCC 2013). Surface refl ectivity is a key driver of surface melt rates (Box et al. 2012). Mapping of diff erent ice-sheet surface types provides a clear indicator of where changes in ice-sheet surface refl ectivity are most prominent. Here, we present an updated version of a surface classifi cation algorithm that utilises NASA’s Moderateresolution Imaging Spectroradiometer (MODIS) sensor on the Terra satellite to systematically monitor ice-sheet surface melt (Fausto et al. 2007). Our aim is to determine the areal extent of three surface types over the 2000–2014 period: glacier ice, melting snow (including percolation areas) and dry snow (Cuff ey & Paterson 2010). Monthly 1 km2 resolution surface-type grids can be downloaded via the CryoClim internet portal (www.cryoclim.net). In this report, we briefl y describe the updated classifi cation algorithm, validation of surface types and inter-annual variability in surface types.


1982 ◽  
Vol 28 (99) ◽  
pp. 315-323 ◽  
Author(s):  
V. I. Morgan

AbstractCollected data on the mean annual surface values forδ18O over Antarctica have been tabulated and also presented in map form. An additional map shows contours of constantδ18O values.


1995 ◽  
Vol 21 ◽  
pp. 103-110 ◽  
Author(s):  
G. S. Boulton ◽  
N. Hulton ◽  
M. Vautravers

A numerical model is used to simulate ice-sheet behaviour in Europe through the last glacial cycle. It is used in two modes: a forward mode, in which the model is driven by a proxy palaeoclimate record and the output compared with a geological reconstruction of ice-sheet fluctuation; and an inverse mode, in which we determine the climate function that would be required to simulate geologically reconstructed ice-sheet fluctuations. From these simulations it is concluded that extra-glacial climates may be poor predictors of ice-sheet surface climates, and that climatic transitions during the glacial period may have been much more rapid and the intensity of warming during the early Holocene much greater than hitherto supposed. Stronger climate forcing is required to drive ice-sheet expansion when sliding occurs at the bed compared with a non-sliding bed. Sliding ice sheets grow more slowly and decay more rapidly than non-sliding ice sheets with the same climate forcing.


2017 ◽  
Vol 114 (50) ◽  
pp. E10622-E10631 ◽  
Author(s):  
Laurence C. Smith ◽  
Kang Yang ◽  
Lincoln H Pitcher ◽  
Brandon T. Overstreet ◽  
Vena W. Chu ◽  
...  

Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.


Sign in / Sign up

Export Citation Format

Share Document