Aportaciones desde la minería de datos al proceso de captación de matrícula en Instituciones de Educación Superior particulares.
Keyword(s):
This article aims to analyze how data mining (DM) optimizes the enrollment process, with the intention of designing a predictive model to manage private enrollment for higher education institutions of Mexico. It analyzes the current status of the higher education institutions in relation to its enrollment process and the application of the DM. With a correlational method, a dataset (DS) was used to model an entropy decision tree with the help of Rapid Miner software. The results show that it is possible to build and test a predictive model management of private enrollment for higher education institutions of Mexico as the ZAM&EST model proposed by the authors.
2020 ◽
Vol 10
(6)
◽
pp. 6510-6514
2014 ◽
Vol 41
(14)
◽
pp. 6400-6407
◽
2018 ◽
Vol 5
(2)
◽
pp. 26
◽
2007 ◽
Vol 55
(4)
◽
pp. 395-410
◽
Keyword(s):