scholarly journals Neuroprotection Mechanisms in Cerebral Hypothermia (Review)

2019 ◽  
Vol 15 (6) ◽  
pp. 94-114 ◽  
Author(s):  
Oleg A. Shevelev ◽  
Marina V. Petrova ◽  
Shavkat Kh. Saidov ◽  
Nadezhda A. Khodorovich ◽  
Pranil Pradkhan

The review focuses on the neuroprotective mechanisms of therapeutic hypothermia from the standpoint of metabolic depression and genomic reprogramming of neurons that develop when brain temperature decreases.The concept of hypothermic pre-conditioning based on the development of typical nonspecific reactions for the formation of the cytoprotective phenotype of neurons due to potentially dangerous stimuli, such as ischemia, reperfusion, and hypothermia, was used to explain the effects of low temperatures. The data confirming the role of therapeutic cerebral hypothermia as a technique of selective brain exposure to mild cold for the neuroprotection and correction of temperature balance disorders are shown.The approach to therapeutic hypothermia as a hypothermic pre-conditioning allows to significantly expand the scope of its use in various procedural variants.

2004 ◽  
Vol 171 (4S) ◽  
pp. 487-487
Author(s):  
Motoo Araki ◽  
Masayoshi Miura ◽  
Hiromi Kumon ◽  
John Belperio ◽  
Robert Strieter ◽  
...  

2020 ◽  
Vol 65 (1) ◽  
pp. 28-41
Author(s):  
Marwa Aly Ahmed ◽  
Júlia Erdőssy ◽  
Viola Horváth

Multifunctional nanoparticles have been shown earlier to bind certain proteins with high affinity and the binding affinity could be enhanced by molecular imprinting of the target protein. In this work different initiator systems were used and compared during the synthesis of poly (N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) nanoparticles with respect to their future applicability in molecular imprinting of lysozyme. The decomposition of ammonium persulfate initiator was initiated either thermally at 60 °C or by using redox activators, namely tetramethylethylenediamine or sodium bisulfite at low temperatures. Morphology differences in the resulting nanoparticles have been revealed using scanning electron microscopy and dynamic light scattering. During polymerization the conversion of each monomer was followed in time. Striking differences were demonstrated in the incorporation rate of acrylic acid between the tetramethylethylenediamine catalyzed initiation and the other systems. This led to a completely different nanoparticle microstructure the consequence of which was the distinctly lower lysozyme binding affinity. On the contrary, the use of sodium bisulfite activation resulted in similar nanoparticle structural homogeneity and protein binding affinity as the thermal initiation.


2010 ◽  
Vol 30 (3) ◽  
pp. 250-253
Author(s):  
Jian-ming WNAG ◽  
De-yi ZHENG ◽  
Yi-tao JIA ◽  
Jin-feng FU ◽  
Xing-feng ZHENG ◽  
...  

2010 ◽  
Vol 30 (2) ◽  
pp. 140-143
Author(s):  
De-yi ZHENG ◽  
Jian-ming WNAG ◽  
Yi-tao JIA ◽  
Jin-feng FU ◽  
Kai-yang LU ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


2020 ◽  
Vol 16 ◽  
Author(s):  
Andrey Krylatov ◽  
Leonid Maslov ◽  
Sergey Y. Tsibulnikov ◽  
Nikita Voronkov ◽  
Alla Boshchenko ◽  
...  

: There is considerable evidence in the heart that autophagy in cardiomyocytes is activated by hypoxia/reoxygenation (H/R) or in hearts by ischemia/reperfusion (I/R). Depending upon the experimental model and duration of ischemia, increases in autophagy in this setting maybe beneficial (cardioprotective) or deleterious (exacerbate I/R injury). Aside from the conundrum as to whether or not autophagy is an adaptive process, it is clearly regulated by a number of diverse molecules including reactive oxygen species (ROS), various kinases, hydrogen sulfide (H2S) and nitric oxide (NO). The purpose this review is to address briefly the controversy regarding the role of autophagy in this setting and to examine a variety of disparate molecules that are involved in its regulation.


MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Chrysanthos D. Christou ◽  
Georgios Tsoulfas

Introduction: Ischemia-reperfusion (I/R) injuries are caused by complex interrelated mechanisms and pathways. Regarding the liver, I/R injuries and their clinical manifestations are crucial for the surgical outcome. Despite its importance, there is no broadly accepted therapy either for the prevention or for the management of I/R injury. I/R injury of the liver can occur either during hepatic surgery (warm) or during the transplantation procedure (cold). MicroRNAs play a pivotal role in the mechanism of I/R injury, as they regulate the expression of the cellular participants and humoral factors associated with I/R injury. Objective: In this review, we highlight the microRNAs that are involved in the I/R injury of the liver, and the molecular pathways that they regulate. In addition, we discuss the potential role of circulating microRNAs as biomarkers and their role as pharmacological targets in the prevention, diagnosis and treatment of I/R injuries. Method: We conducted a comprehensive review of the PubMed bibliographic database regarding microRNAs and I/R injuries of the liver. Results: In diagnostics, microRNA panels could replace invasive diagnostic procedures, relieving patients of the associated complications. In therapeutics, microRNA agomirs, antagomirs and other drugs can be used to shift the balance between proapoptotic and survival pathways, to alleviate the liver damage caused by I/R. In transplantation procedures, microRNA profiling could decrease the incidence of early graft dysfunction, especially regarding marginal grafts. Conclusion: Although microRNAs seem a very promising clinical tool in the management of I/R injuries, further research is required, until microRNAs become a novel tool in the diagnosis and monitoring of an I/R injury of the liver.


Sign in / Sign up

Export Citation Format

Share Document