scholarly journals Structural Damage Detection By Comparison of Experimental And Theoretical Mode Shapes

2016 ◽  
Author(s):  
William George Rosenblatt

Author(s):  
W. Xu ◽  
W. D. Zhu ◽  
S. A. Smith

While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, a slope vibration shape is transformed to a multiscale slope vibration shape in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numerical cases of damaged bars, and results show that multiscale slope vibration shapes can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.



2019 ◽  
Vol 272 ◽  
pp. 01010
Author(s):  
Jian WANG ◽  
Huan JIN ◽  
Xiao MA ◽  
Bin ZHAO ◽  
Zhi YANG ◽  
...  

Frequency Change Ratio (FCR) based damage detection methodology for structural health monitoring (SHM) is analyzed in detail. The effectiveness of damage localization using FCR for some slight damage cases and worse ones are studied on an asymmetric planar truss numerically. Disadvantages of damage detection using FCR in practical application are found and the reasons for the cases are discussed. To conquer the disadvantages of FCR, an Improved Frequency Change Ratio (IFCR) based damage detection method which takes the changes of mode shapes into account is proposed. Verification is done in some damage cases and the results reveal that IFCR can identify the damage more efficiently. Noisy cases are considered to assess the robustness of IFCR and results indicate that the proposed method can work well when the noise is not severe.







2016 ◽  
Vol 138 (3) ◽  
Author(s):  
W. Xu ◽  
W. D. Zhu ◽  
S. A. Smith ◽  
M. S. Cao

While structural damage detection based on flexural vibration shapes, such as mode shapes and steady-state response shapes under harmonic excitation, has been well developed, little attention is paid to that based on longitudinal vibration shapes that also contain damage information. This study originally formulates a slope vibration shape (SVS) for damage detection in bars using longitudinal vibration shapes. To enhance noise robustness of the method, an SVS is transformed to a multiscale slope vibration shape (MSVS) in a multiscale domain using wavelet transform, which has explicit physical implication, high damage sensitivity, and noise robustness. These advantages are demonstrated in numerical cases of damaged bars, and results show that MSVSs can be used for identifying and locating damage in a noisy environment. A three-dimensional (3D) scanning laser vibrometer (SLV) is used to measure the longitudinal steady-state response shape of an aluminum bar with damage due to reduced cross-sectional dimensions under harmonic excitation, and results show that the method can successfully identify and locate the damage. Slopes of longitudinal vibration shapes are shown to be suitable for damage detection in bars and have potential for applications in noisy environments.



2012 ◽  
Vol 204-208 ◽  
pp. 2907-2912
Author(s):  
Guang Qian Du ◽  
Chang Zhi Zhu ◽  
Li Juan Long ◽  
Meng Zhang

On the basis of the theory that natural frequency changes and curvature mode shapes can be employed to determine the locations and degrees of damage of structures, a BP neural network technique with an improved input structure was developed. The two networks were used for diagnosis of structural damage, and structural damages were predicted using gray theory. The results showed that the gray theory to predict the structural damage neural network was applicable to irregular objects such injury problem diagnosis.



2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Zhao ◽  
Zili Xu ◽  
Xuanen Kan ◽  
Jize Zhong ◽  
Tian Guo

Damage can be identified using generalized flexibility matrix based methods, by using the first natural frequency and the corresponding mode shape. However, the first mode is not always appropriate to be used in damage detection. The contact interface of rod-fastened-rotor may be partially separated under bending moment which decreases the flexural stiffness of the rotor. The bending moment on the interface varies as rotating speed changes, so that the first- and second-modal parameters obtained are corresponding to different damage scenarios. In this paper, a structural damage detection method requiring single nonfirst mode is proposed. Firstly, the system is updated via restricting the first few mode shapes. The mass matrix, stiffness matrix, and modal parameters of the updated system are derived. Then, the generalized flexibility matrix of the updated system is obtained, and its changes and sensitivity to damage are derived. The changes and sensitivity are used to calculate the location and severity of damage. Finally, this method is tested through numerical means on a cantilever beam and a rod-fastened-rotor with different damage scenarios when only the second mode is available. The results indicate that the proposed method can effectively identify single, double, and multiple damage using single nonfirst mode.



Author(s):  
Saranika Das ◽  
Koushik Roy

Vibration-based damage detection techniques receive wide attention of the research community in recent years to overcome the limitations of conventional structural health monitoring methods. The modal parameters, namely, natural frequencies, mode shapes, transmissibility, frequency response function (FRF), and other damage sensitive features are usually employed to identify damage in a structure. The main objective of this review is to generate a detailed understanding of FRF-based techniques and to study their performance in terms of advantage, accuracy, and limitations in structural damage detection. This paper also reviews various approaches to develop methodologies in terms of efficiency and computational time. The study observed that excitation frequency, location of application of excitation, type of sensor, number of measurement locations, noise contamination in FRF data, selection of frequency range for simulation, weighting and numerical techniques to solve the over-determined set of equations influence the effectiveness of damage identification procedure. Limitations and future prospects have also been addressed in this paper. The content of this paper aims to guide researchers in developing formulations, updating models, and improving results in the field of FRF-based damage identification.



2014 ◽  
Vol 919-921 ◽  
pp. 303-307 ◽  
Author(s):  
Yong Ming Fu ◽  
Ling Yu

The development of a methodology for the accurate and reliable assessment of structural damages, as one crucial step in the structural health monitoring (SHM) field, is very important to ensure the safety, integrity and stability of structures. An improved adaptive differential evolution (IADE) algorithm is proposed for structural damage detection (SDD) based on DE algorithm and FE model-updating techniques. An objective function is defined as minimizing the discrepancies between the experimental and analytical modal parameters (namely, natural frequencies and mode shapes). It is set as a nonlinear least-squares problem with bound constraints. Unlike the commonly used line-search methods, the IADE approach, a heuristic method for the direct search of the optimal point of the given objective function, is employed to make the optimization process more robust and reliable. Some numerical simulations for single and multiple damage cases of a 25-bar space truss frame structure have been conducted for evaluation on the reliability and robustness of the proposed method. The illustrated results show that the IADE algorithm is very effective for SDD. It can not only locate the structural damages but also quantify the severity of damages. Regardless of slight damage or multiple damages, the identification accuracy is very high and noise immunity is better, which shows that the IADE algorithm is feasible and effective for SDD.



Sign in / Sign up

Export Citation Format

Share Document