Improvement of Flotation Enrichment of Copper-Nickel Ores Based on the Selective Destruction of Mineral Aggregates in High-Energy Impact

1998 ◽  
Vol 555 ◽  
Author(s):  
H. Fritze ◽  
A. Schnittker ◽  
T. Witke ◽  
C. Rüscher ◽  
S. Weber ◽  
...  

AbstractPulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting point target materials and the preparation of films with complex composition. High energy impact leads to melting and evaporation of the target material in a single step. In case of mullite ablation, the flux of the metal components is stoichiometric. Under reduced pressure the oxygen content in the layers decreases. However, after a short oxidation treatment, the formation of mullite in the coating is completed, as confirmed by IR spectroscopy and XRD investigations. For a commercial Si-SiC precoated C/C material, the effectiveness of additional PLD mullite layers as outer oxidation protection is tested in the temperature range 773 K < T < 1873 K. Mullite coatings with a thickness of 2.5 pm improve the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface, all samples exhibited a mass increase upon oxidation. For oxidation durations of three days, only amorphous SiO2 is formed at the mullite-SiC interface. The inward diffusion of oxygen across the outer mullite-containing layer controls the kinetics of the reaction, as was deduced from 18O diffusivity measurements in PLD mullite layers. At temperatures close to the eutectic temperature (1860 K), mullite can seal defects. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data.


2008 ◽  
Vol 43 (13) ◽  
pp. 4658-4665 ◽  
Author(s):  
Li-feng Hou ◽  
Ying-hui Wei ◽  
Bao-sheng Liu ◽  
Bing-she Xu

1979 ◽  
Vol 105 (8) ◽  
pp. 957-967
Author(s):  
Salem D. Ramaswamy ◽  
Seng-Lip Lee ◽  
M.H. Abdul Khader ◽  
Raja V. Subrahmanyam ◽  
Mohamed A. Aziz
Keyword(s):  

Author(s):  
Mohamed Houssein Ghandour ◽  
Annie-Claude Bayeul-Lainé ◽  
Olivier Coutier-Delgosha
Keyword(s):  

2017 ◽  
Vol 64 (8) ◽  
pp. 585-590 ◽  
Author(s):  
L. I. Mal’tsev ◽  
T. P. Belogurova ◽  
I. V. Kravchenko
Keyword(s):  

2012 ◽  
Vol 525-526 ◽  
pp. 365-368
Author(s):  
Chun Lin Chen ◽  
Yu Long Li ◽  
Fuh Gwo Yuan

Based on the self-focusing property of time-reversal (T-R) concept, a time focusing parameter was suggested to improve the impact source identification method developed in authors previous work. This paper presents a further study on monitoring relatively high energy impact events which caused induced damage on structures. Numerical verifications for a finite isotropic plate and a composite plate under low velocity impacts are performed to demonstrate the versatility of T-R method for impact location detection with induced plastic deformation and delamination damage on metallic and composite structures respectively. The focusing property of T-R concept was adequately utilized to detect impact/damage location. The results show that impact events with various features can be localized using T-R method by introducing the time focusing parameter. It is suited to monitor serious impact events on plate like structures in practice in future.


Sign in / Sign up

Export Citation Format

Share Document