2009 ◽  
Vol 47 (01) ◽  
Author(s):  
K Hochrath ◽  
S Hillebrandt ◽  
F Lammert ◽  
B Rathkolb ◽  
H Fuchs ◽  
...  

1973 ◽  
Vol 30 (01) ◽  
pp. 178-190 ◽  
Author(s):  
Itsuro Kobayashi ◽  
Paul Didisheim

SummaryADP, AMP, or ATP was injected rapidly intravenously in rats. ADP injection resulted in the f olio wing transient changes: a drop in platelet count, a rise in central venous pressure, a fall in carotid arterial PO2, bradycardia, arrhythmia, flutter-fibrillation, and arterial hypotension. AMP and ATP produced some of these same effects; but except for hypotension, their frequency and severity Avere much less than those following ADP.Prior intravenous administration of acetylsalicylic acid or pyridinolcarbamate, two inhibitors of the second wave of ADP-induced platelet aggregation in vitro, significantly reduced the frequency and severity of all the above ADP-induced changes except hypotension. These observations suggest that many of the changes (except hypotension) observed to follow ADP injection are produced by platelet aggregates which lodge transiently in various microcirculatory beds then rapidly disaggregate and recirculate.


1965 ◽  
Vol 48 (4) ◽  
pp. 609-618 ◽  
Author(s):  
H. K. Dyster-Aas ◽  
C. E. T. Krakau

ABSTRACT In addition to the previously described permeability disturbance in the blood aqueous barrier of the eye, measured as an increase of the aqueous flare, a series of transitory systemic effects have been recorded following the subcutaneous injection of synthetic α-MSH: marked increase of the free fatty acids in plasma, decrease in the serum calcium level, decrease in the blood pressure, increase in the skin temperature, increased frequency and diminished amplitude of respiration, presence of slow waves in the EEG. There is a correlation between the magnitude of the aqueous flare increase and the increase of free fatty acids in plasma and also between the aqueous flare and the minimum serum calcium level.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ariane Zamarioli ◽  
Zachery R. Campbell ◽  
Kevin A. Maupin ◽  
Paul J. Childress ◽  
Joao P. B. Ximenez ◽  
...  

AbstractWith increased human presence in space, bone loss and fractures will occur. Thrombopoietin (TPO) is a recently patented bone healing agent. Here, we investigated the systemic effects of TPO on mice subjected to spaceflight and sustaining a bone fracture. Forty, 9-week-old, male, C57BL/6 J were divided into 4 groups: (1) Saline+Earth; (2) TPO + Earth; (3) Saline+Flight; and (4) TPO + Flight (n = 10/group). Saline- and TPO-treated mice underwent a femoral defect surgery, and 20 mice were housed in space (“Flight”) and 20 mice on Earth for approximately 4 weeks. With the exception of the calvarium and incisor, positive changes were observed in TPO-treated, spaceflight bones, suggesting TPO may improve osteogenesis in the absence of mechanical loading. Thus, TPO, may serve as a new bone healing agent, and may also improve some skeletal properties of astronauts, which might be extrapolated for patients on Earth with restraint mobilization and/or are incapable of bearing weight on their bones.


Sign in / Sign up

Export Citation Format

Share Document