scholarly journals Modeling and Optimization of Fiber Quality and Energy Consumption during Refining Based on Adaptive Neuro-fuzzy Inference System and Subtractive Clustering

BioResources ◽  
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunbo Gao ◽  
Jun Hua ◽  
Liping Cai ◽  
Guangwei Chen ◽  
Na Jia ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2771 ◽  
Author(s):  
Abbas Mardani ◽  
Dalia Streimikiene ◽  
Mehrbakhsh Nilashi ◽  
Daniel Arias Aranda ◽  
Nanthakumar Loganathan ◽  
...  

Understanding the relationships among CO2 emissions, energy consumption, and economic growth helps nations to develop energy sources and formulate energy policies in order to enhance sustainable development. The present research is aimed at developing a novel efficient model for analyzing the relationships amongst the three aforementioned indicators in G20 countries using an adaptive neuro-fuzzy inference system (ANFIS) model in the period from 1962 to 2016. In this regard, the ANFIS model has been used with prediction models using real data to predict CO2 emissions based on two important input indicators, energy consumption and economic growth. This study made use of the fuzzy rules through ANFIS to generalize the relationships of the input and output indicators in order to make a prediction of CO2 emissions. The experimental findings on a real-world dataset of World Development Indicators (WDI) revealed that the proposed model efficiently predicted the CO2 emissions based on energy consumption and economic growth. The direction of the interrelationship is highly important from the economic and energy policy-making perspectives for this international forum, as G20 countries are primarily focused on the governance of the global economy.


2016 ◽  
Vol 5 (4) ◽  
pp. 64-82 ◽  
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen I. Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.


2020 ◽  
Vol 268 ◽  
pp. 114977 ◽  
Author(s):  
Mohammed Ali Jallal ◽  
Aurora González-Vidal ◽  
Antonio F. Skarmeta ◽  
Samira Chabaa ◽  
Abdelouhab Zeroual

2017 ◽  
Author(s):  
Mahdi Zarei

AbstractThis paper presents the development and evaluation of different versions of Neuro-Fuzzy model for prediction of spike discharge patterns. We aim to predict the spike discharge variation using first spike latency and frequency-following interval. In order to study the spike discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms, ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of first spike latency and frequency with a higher accuracy compared to other algorithms.


Author(s):  
R. Salehi ◽  
S. Chaiprapat

Abstract A predictive model to estimate hydrogen sulfide (H2S) emission from sewers would offer engineers and asset managers the ability to evaluate the possible odor/corrosion problems during the design and operation of sewers to avoid in-sewer complications. This study aimed to model and forecast H2S emission from a gravity sewer, as a function of temperature and hydraulic conditions, without requiring prior knowledge of H2S emission mechanism. Two different adaptive neuro-fuzzy inference system (ANFIS) models using grid partitioning (GP) and subtractive clustering (SC) approaches were developed, validated, and tested. The ANFIS-GP model was constructed with two Gaussian membership functions for each input. For the development of the ANFIS-SC model, the MATLAB default values for clustering parameters were selected. Results clearly indicated that both the best ANFIS-GP and ANFIS-SC models produced smaller error compared with the multiple regression models and demonstrated a superior predictive performance on forecasting H2S emission with an excellent R2 value of >0.99. However, the ANFIS-GP model possessed fewer rules and parameters than the ANFIS-SC model. These findings validate the ANFIS-GP model as a potent tool for predicting H2S emission from gravity sewers.


Sign in / Sign up

Export Citation Format

Share Document