h2s emission
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
R. Salehi ◽  
S. Chaiprapat

Abstract A predictive model to estimate hydrogen sulfide (H2S) emission from sewers would offer engineers and asset managers the ability to evaluate the possible odor/corrosion problems during the design and operation of sewers to avoid in-sewer complications. This study aimed to model and forecast H2S emission from a gravity sewer, as a function of temperature and hydraulic conditions, without requiring prior knowledge of H2S emission mechanism. Two different adaptive neuro-fuzzy inference system (ANFIS) models using grid partitioning (GP) and subtractive clustering (SC) approaches were developed, validated, and tested. The ANFIS-GP model was constructed with two Gaussian membership functions for each input. For the development of the ANFIS-SC model, the MATLAB default values for clustering parameters were selected. Results clearly indicated that both the best ANFIS-GP and ANFIS-SC models produced smaller error compared with the multiple regression models and demonstrated a superior predictive performance on forecasting H2S emission with an excellent R2 value of >0.99. However, the ANFIS-GP model possessed fewer rules and parameters than the ANFIS-SC model. These findings validate the ANFIS-GP model as a potent tool for predicting H2S emission from gravity sewers.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1876
Author(s):  
Daneish Despot ◽  
Micaela Pacheco Fernández ◽  
Matthias Barjenbruch

Hydrogen sulfide (H2S) related to wastewater in sewer systems is known for causing significant problems of corrosion and odor nuisance. Sewer systems severely affected by H2S typically rely on online H2S gas sensors for monitoring and control. However, these H2S gas sensors only provide information about the H2S emission potential at the point being monitored, which is sometimes inadequate to design control measures. In this study, a comparison of three market-ready online sensors capable of liquid-phase H2S detection in sewer systems was assessed and compared. Two of the three sensors are based on UV/Vis spectrophotometry, while the other adapted the design and principles of a Clark-type electrochemical microsensor. The H2S measurements of the sensors were statistically compared to a standard laboratory method at first. Following that, the performance of the online sensors was evaluated under realistic sewer conditions using the Berlin Water Company (BWB) research sewer pilot plant. Test applications representing scenarios of typical H2S concentrations found in sulfide-affected sewers and during control measures were simulated. The UV/Vis spectrometers showed that the performance of the sensors was highly dependent on the calibration type and measurements used for deriving the calibration function. The electrochemical sensor showed high sensitivity by responding to alternating anaerobic/anoxic conditions simulated during nitrate dosing. All sensors were prone to measurement disturbances due to high amounts of sanitary solids in wastewater at the study site and required continuous maintenance for reliable measurements. Finally, a summary of the key attributes and limitations of the sensors compared for liquid phase H2S detection is outlined.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 940 ◽  
Author(s):  
Baitong Chen ◽  
Jacek A. Koziel ◽  
Andrzej Białowiec ◽  
Myeongseong Lee ◽  
Hantian Ma ◽  
...  

Acute releases of hydrogen sulfide (H2S) are of serious concern in agriculture, especially when farmers agitate manure to empty storage pits before land application. Agitation can cause the release of dangerously high H2S concentrations, resulting in human and animal fatalities. To date, there is no proven technology to mitigate these short-term releases of toxic gas from manure. In our previous research, we have shown that biochar, a highly porous carbonaceous material, can float on manure and mitigate gaseous emissions over extended periods (days–weeks). In this research, we aim to test the hypothesis that biochar can mitigate H2S emissions over short periods (minutes–hours) during and shortly after manure agitation. The objective was to conduct proof-of-the-concept experiments simulating the treatment of agitated manure. Two biochars, highly alkaline and porous (HAP, pH 9.2) made from corn stover and red oak (RO, pH 7.5), were tested. Three scenarios (setups): Control (no biochar), 6 mm, and 12 mm thick layers of biochar were surficially-applied to the manure. Each setup experienced 3 min of manure agitation. Real-time concentrations of H2S were measured immediately before, during, and after agitation until the concentration returned to the initial state. The results were compared with those of the Control using the following three metrics: (1) the maximum (peak) flux, (2) total emission from the start of agitation until the concentration stabilized, and (3) the total emission during the 3 min of agitation. The Gompertz’s model for determination of the cumulative H2S emission kinetics was developed. Here, 12 mm HAP biochar treatment reduced the peak (1) by 42.5% (p = 0.125), reduced overall total emission (2) by 17.9% (p = 0.290), and significantly reduced the total emission during 3 min agitation (3) by 70.4%. Further, 6 mm HAP treatment reduced the peak (1) by 60.6%, and significantly reduced overall (2) and 3 min agitation’s (3) total emission by 64.4% and 66.6%, respectively. Moreover, 12 mm RO biochar treatment reduced the peak (1) by 23.6%, and significantly reduced overall (2) and 3 min total (3) emission by 39.3% and 62.4%, respectively. Finally, 6 mm RO treatment significantly reduced the peak (1) by 63%, overall total emission (2) by 84.7%, and total emission during 3 min agitation (3) by 67.4%. Biochar treatments have the potential to reduce the risk of inhalation exposure to H2S. Both 6 and 12 mm biochar treatments reduced the peak H2S concentrations below the General Industrial Peak Limit (OSHA PEL, 50 ppm). The 6 mm biochar treatments reduced the H2S concentrations below the General Industry Ceiling Limit (OSHA PEL, 20 ppm). Research scaling up to larger manure volumes and longer agitation is warranted.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1385
Author(s):  
Simone Becarelli ◽  
Salvatore La China ◽  
Alla Lapidus ◽  
Andrey Prijibelski ◽  
Dmitrii Polev ◽  
...  

A new halo-alkaline sulfur-oxidising bacterial strain was isolated from brackish estuary sediments contaminated by total petroleum hydrocarbon. The isolate was classified as a new strain of Thioalkalivibrio sulfidiphilus sp., showing a higher capability of adaptation to pH and a higher optimal sodium concentration for growth, when compared to Thioalkalivibrio sulfidiphilus sp. HL-EbGr7, type strain of the species. The strain was capable to grow in saline concentrations up to 1.5 M Na+ and pH up to 10. The genome of the new isolate was sequenced and annotated. The comparison with the genome of Thioalkalivibrio sulfidiphilus sp. HL-EbGr7 showed a duplication of an operon encoding for a putative primary sodium extruding pump and the presence of a sodium/proton antiporter with optimal efficiency at halo-alkaline conditions. The new strain was able to oxidize sulfide at halo-alkaline conditions at the rate of 1 mmol/mg-N/h, suitable for industrial applications dedicated to the recovery of alkaline scrubber for H2S emission absorption and abatement.


Author(s):  
Tariwari C.N Angaye ◽  
Koru J. Alagoa

Emission of Hydrogen Sulphide (H2S) from dumpsites has become a global threat due to its impact on global climate change. This study assessed the spatial and seasonal levels of H2S emissions from 6 dumpsites (LA - LF), with portable air quality meter (AEROQUAL-Series 300). Results showed that the spatial level of H2S ranged from 1.40 ppm - 14.34 ppm. Based on seasonal variation level of H2S ranged from 1.88 ppm – 3.86 ppm (p<0.05), with higher values in wet season. Meanwhile H2S were not detected in the control station (LX). Based on model for Air Quality Index (AQI), H2S emission was predominantly rated as safe and moderate, except for the two stations in the central dumpsite (LE and LF). These results confirmed the emission of H2S from the dumpsite due to anthropogenic activities. We therefore recommend policies aimed at sequestration of H2S, by the reduce, reuse and recycle policy of waste stream.


2019 ◽  
Vol 34 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Matheus Ribeiro Augusto ◽  
Bruno Campos ◽  
Vanessa Silveira Barreto Carvalho ◽  
Herlane Costa Calheiros

Abstract Water Resource Recovery Facility (WRRF) can be source of odorous gases. We analyzed the emission and dispersion of hydrogen sulfide gas (H2S), odor indicator, produced during the anaerobic treatment of wastewaters, using WATER9 and AERMOD models for two distinct events: August 2013 and February-March 2014. Data from two WRRF in Brazil were used to feed the model and a statistical data validation was performed, followed by an evaluation of model results regarding H2S emission and dispersion. Daily peak events and averages over the two periods were calculated. Results show a good performance from the model in comparison to the observations. Moreover, odor plumes typically reached 2-4 km from their sources and they may be strongly affected by atmospheric stability/instability conditions in the events analyzed and, in general, only the residences at the vicinity of WRRF were affected by the pollutant odor. Finally, the methodology presented showed to be feasible and realistic for purposes of WRRF planning and management.


Author(s):  
Yue Wang ◽  
Shanjiang Liu ◽  
Wentao Xue ◽  
He Guo ◽  
Xinrong Li ◽  
...  

This study aimed to investigate the characteristics of gaseous emission (methane—CH4, carbon dioxide—CO2, nitrous oxide—N2O, nitric oxide—NO, hydrogen sulfide—H2S and sulfur dioxide—SO2) and the conservation of carbon (C), nitrogen (N), and sulfur (S) during cattle manure composting under different aeration strategies. Three aeration strategies were set as C60, C100, and I60, representing the different combinations of aeration method (continuous—C or intermittent—I) and aeration rate (60 or 100 L·min−1·m−3). Results showed that C, N, S mass was reduced by 48.8–53.1%, 29.8–35.9% and 19.6–21.9%, respectively, after the composing process. Among the three strategies, the intermittent aeration treatment I60 obtained the highest N2O emissions, resulting in the highest N loss and greenhouse gas (GHG) emissions when the GHG emissions from power consumption were not considered. Within two continuous aeration treatments, lower aeration rates in C60 caused lower CO2, N2O, NO, and SO2 emissions but higher CH4 emissions than those from C100. Meanwhile, C and N losses were also lowest in the C60 treatment. H2S emission was not detected because of the more alkaline pH of the compost material. Thus, C60 can be recommended for cattle manure composting because of its nutrient conservation and mitigation of major gas and GHG emissions.


2017 ◽  
Vol 76 (10) ◽  
pp. 2753-2763 ◽  
Author(s):  
Daniel Jung ◽  
Laetitia Hatrait ◽  
Julien Gouello ◽  
Arnaud Ponthieux ◽  
Vincent Parez ◽  
...  

Abstract Hydrogen sulfide (H2S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H2S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H2S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H2S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H2S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H2S·h−1. Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.


Sign in / Sign up

Export Citation Format

Share Document