scholarly journals Predicting H2S emission from gravity sewer using an adaptive neuro-fuzzy inference system

Author(s):  
R. Salehi ◽  
S. Chaiprapat

Abstract A predictive model to estimate hydrogen sulfide (H2S) emission from sewers would offer engineers and asset managers the ability to evaluate the possible odor/corrosion problems during the design and operation of sewers to avoid in-sewer complications. This study aimed to model and forecast H2S emission from a gravity sewer, as a function of temperature and hydraulic conditions, without requiring prior knowledge of H2S emission mechanism. Two different adaptive neuro-fuzzy inference system (ANFIS) models using grid partitioning (GP) and subtractive clustering (SC) approaches were developed, validated, and tested. The ANFIS-GP model was constructed with two Gaussian membership functions for each input. For the development of the ANFIS-SC model, the MATLAB default values for clustering parameters were selected. Results clearly indicated that both the best ANFIS-GP and ANFIS-SC models produced smaller error compared with the multiple regression models and demonstrated a superior predictive performance on forecasting H2S emission with an excellent R2 value of >0.99. However, the ANFIS-GP model possessed fewer rules and parameters than the ANFIS-SC model. These findings validate the ANFIS-GP model as a potent tool for predicting H2S emission from gravity sewers.

2016 ◽  
Vol 5 (4) ◽  
pp. 64-82 ◽  
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen I. Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.


2017 ◽  
Author(s):  
Mahdi Zarei

AbstractThis paper presents the development and evaluation of different versions of Neuro-Fuzzy model for prediction of spike discharge patterns. We aim to predict the spike discharge variation using first spike latency and frequency-following interval. In order to study the spike discharge dynamics, we analyzed the Cerebral Cortex data of the cat from [29]. Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Wang and Mendel (WM), Dynamic evolving neural-fuzzy inference system (DENFIS), Hybrid neural Fuzzy Inference System (HyFIS), genetic for lateral tuning and rule selection of linguistic fuzzy system (GFS.LT.RS) and subtractive clustering and fuzzy c-means (SBC) algorithms are applied for data. Among these algorithms, ANFIS and GFS.LT.RS models have better performance. On the other hand, ANFIS and GFS.LT.RS algorithms can be used to predict the spike discharge dynamics as a function of first spike latency and frequency with a higher accuracy compared to other algorithms.


Aviation ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 150-163 ◽  
Author(s):  
Panarat Srisaeng ◽  
Glenn S. Baxter ◽  
Graham Wild

This study has proposed and empirically tested two Adaptive Neuro-Fuzzy Inference System (ANFIS) models for the first time for predicting Australia‘s domestic low cost carriers‘ demand, as measured by enplaned passengers (PAX Model) and revenue passenger kilometres performed (RPKs Model). In the ANFIS, both the learning capabilities of an artificial neural network (ANN) and the reasoning capabilities of fuzzy logic are combined to provide enhanced prediction capabilities, as compared to using a single methodology. Sugeno fuzzy rules were used in the ANFIS structure and the Gaussian membership function and linear membership functions were also developed. The hybrid learning algorithm and the subtractive clustering partition method were used to generate the optimum ANFIS models. Data was normalized in order to increase the model‘s training performance. The results found that the mean absolute percentage error (MAPE) for the overall data set of the PAX and RPKs models was 1.52% and 1.17%, respectively. The highest R2-value for the PAX model was 0.9949 and 0.9953 for the RPKs model, demonstrating that the models have high predictive capabilities.


2014 ◽  
Vol 71 (1) ◽  
pp. 22-30 ◽  
Author(s):  
Mawuli Dzakpasu ◽  
Miklas Scholz ◽  
Valerie McCarthy ◽  
Siobhán Jordan ◽  
Abdulkadir Sani

Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.


Author(s):  
Seyed Abdonnabi Razavi ◽  
Navid Siahpolo ◽  
Mehdi Mahdavi Adeli

Careful estimation of global ductility will certainly lead to greater accuracy in the design of structural members. In this paper, a new and optimal intelligent model is proposed to predict the roof ductility (μR) of EBF steel frames exposed to the near-fault pulse-like earthquakes, using the Adaptive Neuro-Fuzzy Inference System (ANFIS). To achieve this goal, a databank consisting of 12960 data is created. To establish different geometrical properties of models, 3-,6-, 9-, 12-, 15, 20-stories, steel EBF frames are considered with 3 different types of link beam, column stiffness, and brace slenderness. All models are analysed to reach 4 different performance levels using nonlinear time history under 20 near-fault earthquakes. About 6769 data are applied as ANFIS training data. Subtractive clustering and Fuzzy C-Mean clustering (FCM) methods are applied to generate the purposed model. The results show that FCM provides more accurate outcomes. Moreover, to validate the model, 2257 data are applied (as test data) in order to calculate the correlation coefficient (R) and mean squared error (MSE) between the predicted values of (μR) and the real values. The results of correlation analysis show the high accuracy of the proposed intelligent model.


Sign in / Sign up

Export Citation Format

Share Document