scholarly journals Intraspecific Diversity in the Production and Characterization of Laccase within Ganoderma lucidum

BioResources ◽  
2014 ◽  
Vol 9 (3) ◽  
Author(s):  
Jasmina Ćilerdžić ◽  
Mirjana Stajić ◽  
Jelena Vukojević ◽  
Nikola Lončar
Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5553
Author(s):  
Loreto Robles-Hernández ◽  
Nora A. Salas-Salazar ◽  
Ana C. Gonzalez-Franco

Previous studies of Ganoderma lucidum have focused on its medicinal applications. Limited information is available about its antibacterial activity against plant pathogens. Thus, the goal of this study was to purify and characterize the antibacterial activity against plant pathogenic bacteria from culture fluids of G. lucidum. The nature of the bioactive components was determined using heat boiling, organic solvents, dialysis tubing, gel exclusion chromatography (GEC), proteinase sensitivity, HPLC, HPLC-APCI-MS, and GC-MS. The bioactive compounds were neither lipid, based on their solubility, nor proteic in nature, based on proteinase digestion and heat stability. The putative-bioactive polysaccharides have molecular weights that range from 3500 to 4500 Daltons as determined by dialysis tubing, GEC and APCI-MS analysis. The composition of the antibacterial compounds was determined by GC-MS. This is the first report of small polysaccharides produced by G. lucidum with activity against bacterial plant pathogens.


Author(s):  
Olga Gavrilova ◽  
Anna Skritnika ◽  
Tatiana Gagkaeva

Analysis of 49 strains of F. langsethiae originating from northern Europe (Russia, Finland, Sweden, UK, Norway, and Latvia) revealed the presence of spontaneous auxotrophic mutants that reflect natural intraspecific diversity. Our investigations detected that 49.0% of F. langsethiae strains were auxotrophic mutants for biotin, and 8.2% of the strains required thiamine as a growth factor. They failed to grow on vitamin-free media. For both prototrophic and auxotrophic strains, no growth defect was observed in rich organic media. Without essential vitamins, a significant reduction in the growth of the auxotrophic strains results in a decrease of the formation of T-2 toxin and diacetoxyscirpenol. In addition, all analysed F. langsethiae strains were distinguished into two subgroups based on PCR product sizes. According to our results, 26 and 23 strains of F. langsethiae belong to subgroups I and II respectively. We determined that the deletion in the IGS region of the rDNA of F. langsethiae belonging to subgroup II is linked with temperature sensitivity and causes a decrease in strain growth at 30 °C. Four thiamine auxotrophic strains were found in subgroup I, while 21 biotin auxotrophic strains were detected in subgroups II. To the best of our knowledge, the spontaneous mutations in F. langsethiae observed in the present work have not been previously reported.


2015 ◽  
Vol 117 ◽  
pp. 106-114 ◽  
Author(s):  
Deng Pan ◽  
Linqiang Wang ◽  
Congheng Chen ◽  
Bingwen Hu ◽  
Ping Zhou

2018 ◽  
Vol 118 ◽  
pp. 320-326 ◽  
Author(s):  
Zichao Wang ◽  
Huiru Zhang ◽  
Yingbin Shen ◽  
Xiaoxiao Zhao ◽  
Xueqin Wang ◽  
...  

Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 1016-1028 ◽  
Author(s):  
Amaresh Chandra ◽  
K.K. Tiwari ◽  
D. Nagaich ◽  
N. Dubey ◽  
S. Kumar ◽  
...  

A limited number of functional molecular markers has slowed the desired genetic improvement of Stylosanthes species. Hence, in an attempt to develop simple sequence repeat (SSR) markers, genomic libraries from Stylosanthes seabrana B.L. Maass & ’t Mannetje (2n = 2x = 20) using 5′ anchored degenerate microsatellite primers were constructed. Of the 76 new microsatellites, 21 functional primer pairs were designed. Because of the small number of primer pairs designed, 428 expressed sequence tag (EST) sequences from seven Stylosanthes species were also examined for SSR detection. Approximately 10% of sequences delivered functional primer pairs, and after redundancy elimination, 57 microsatellite repeats were selected. Tetranucleotides followed by trinucleotides were the major repeated sequences in Stylosanthes ESTs. In total, a robust set of 21 genomic–SSR (gSSR) and 20 EST–SSR (eSSR) markers were developed. These markers were analyzed for intraspecific diversity within 20 S. seabrana accessions and for their cross-species transferability. Mean expected (He) and observed (Ho) heterozygosity values with gSSR markers were 0.64 and 0.372, respectively, whereas with eSSR markers these were 0.297 and 0.214, respectively. Dendrograms having moderate bootstrap value (23%–94%) were able to distinguish all accessions of S. seabrana with gSSR markers, whereas eSSR markers showed 100% similarities between few accessions. The set of 21 gSSRs, from S. seabrana, and 20 eSSRs, from selected Stylosanthes species, with their high cross-species transferability (45% with gSSRs, 86% with eSSRs) will facilitate genetic improvement of Stylosanthes species globally.


2020 ◽  
Vol 18 (4) ◽  
pp. 445-456
Author(s):  
Elena A. Dyachenko ◽  
Elena V. Semenova ◽  
Elena Z. Kochieva

Background. Plant chloroplast genome have conservative structure, but its nucleotide sequence is polymorphous due to which cpDNA fragments are often used in taxonomic and phylogenetic studies. Despite the widespread distribution and use of Fabeae species, mainly peas (Pisum), data on the intraspecific diversity of cpDNA fragments are almost absent. The aim of the work was to analyze the intraspecific variability of three cpDNA spacers in Pisum. Materials and methods. As a result of the work, intergenic spacers trnYtrnT, trnHpsbA and rpoBtrnC in 38 accessions of the Pisum and related Fabeae species were sequenced. Despite the fact that the selected chloroplast fragments are generally considered to be sufficiently variable in plants and are often used for phylogenetic studies, Pisum accessions have been found to have no intraspecific differences in two of the three spacers sequences analyzed. Results and conclusion. A total 97 SNPs were detected in Pisum accessions, seven of them distinguished P. sativum from P. fulvum. The most variable of the analyzed fragments was the intergenic spacer rpoBtrnC. Based on rpoBtrnC sequence 17 haplotypes in P. sativum and four haplotypes in P. fulvum were revealed. The cpDNA sequencing data were used for a phylogenetic analysis. On the obtained tree Vavilovia formosa accession formed a separate branch from pea accessions. All Pisum accessions fall in one cluster, split into distinct P. sativum and P. fulvum subclusters (BI = 99%).


Sign in / Sign up

Export Citation Format

Share Document