Effects of Magnetized, Chelated Iron Foliage Treatments on Foliar Physiology, Plant Growth and Drought Tolerance for Two Legume Species

Author(s):  
Craig Ramsey ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


2009 ◽  
Vol 6 (3) ◽  
pp. 470-479
Author(s):  
Baghdad Science Journal

The study was conducted during the spring season of 2000 and2001. The objective was to study the changes in leaves number of sunflower plants and its leaf area during growth stages under hardening conditions to drought tolerance. Agricultural practices were made according to recommendations.Asplit-split plots design was used with three replications.The main plots included irrigation treatments:irrigation to100%(full irrigation),75and50%of available water.The sub plots were the cultivars Euroflor and Flame.The sub-sub plots represented four seed soaking treatments:Control(unsoaking), soaking in water ,Paclobutrazol solution(250ppm),and Pix solution(500ppm). The soaking continued for 24 hours then seeds were dried at room temperature until they regained their original weight. Amount of water for each irrigation were calculated to satisfy water depletion in soil using a neutron moisture meter. Results indicated that stress 800Kp reduced leaves number after 72 days from Planting by 5.29% compared with full irrigation as a mean of seasons.Increased stress to 600 and 800 Kp caused decreasing in leaf area at physiological maturation by 36.10 and 44.32% than full irrigation as a mean of seasons. Flame was superior over Euroflor after 58 days from planting in leaves number by 12.30 % in the season of 2001, while Euroflor was superior by 4.87% after58 days from planting in the season of 2000 ,and in leaf area by 58.25% after 44 days from planting in the season of 2001, and by 34.72% as a mean of seasons.Soaking the seeds presowing in paclobutrazol and pix solutions enhanced leaf formation , the percentage of increase reached to 5.57 and 7.49% after 86 days from planting as a mean of seasons, and leaf area by 35.9 and 36.95% respectively, compared with unsoaked as a mean of seasons. This study suggest that it could improve plant growth and kept sutable leaf area during seeds filling and drought tolerance by soaking the seeds presowing in water or plant growth regulators.


Author(s):  
Zaffar Mahdi Dar ◽  
Amjad Masood ◽  
Arshad Hussain Mughal ◽  
Malik Asif ◽  
Mushtaq Ahamd Malik

2018 ◽  
Vol 58 (12) ◽  
pp. 1009-1022 ◽  
Author(s):  
Hafsa Naseem ◽  
Muhammad Ahsan ◽  
Muhammad A. Shahid ◽  
Naeem Khan

2020 ◽  
Vol 15 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Chinenyenwa Fortune Chukwuneme ◽  
Olubukola Oluranti Babalola ◽  
Funso Raphael Kutu ◽  
Omena Bernard Ojuederie

2020 ◽  
Vol 8 (9) ◽  
pp. 1329
Author(s):  
Zhiqiang Pang ◽  
Ying Zhao ◽  
Peng Xu ◽  
Diqiu Yu

Among abiotic stresses, drought is one of the most important factors limiting plant growth. To increase their drought tolerance and survival, most plants interact directly with a variety of microbes. Upland rice (Oryza sativa L.) is a rice ecotype that differs from irrigated ecotype rice; it is adapted to both drought-stress and aerobic conditions. However, its root microbial resources have not been explored. We isolated bacteria and fungi from roots of upland rice in Xishuangbanna, China. Four hundred sixty-two endophytic and rhizospheric isolates (337 bacteria and 125 fungi) were distributed. They were distributed among 43 genera on the basis of 16S rRNA and internal transcribed spacer (ITS) gene sequence analysis. Notably, these root microbes differed from irrigated rice root microbes in irrigated environments; for example, members of the Firmicutes phylum were enriched (by 28.54%) in the roots of the upland plants. The plant growth-promoting (PGP) potential of 217 isolates was investigated in vitro. The PGP ability of 17 endophytic and 10 rhizospheric isolates from upland rice roots was evaluated under well-irrigated and drought-stress conditions, and 9 fungal strains increased rice seedling shoot length, shoot and root fresh weight (FW), antioxidant capability, and proline (Pro) and soluble sugar contents. Our work suggests that fungi from upland rice roots can increase plant growth under irrigated and drought-stress conditions and can serve as effective microbial resources for sustainable agricultural production in arid regions.


Sign in / Sign up

Export Citation Format

Share Document