scholarly journals Matrix Gla protein in tumoral pathology

2016 ◽  
Vol 89 (3) ◽  
pp. 319-321 ◽  
Author(s):  
Simona Roxana Gheorghe ◽  
Alexandra Mărioara Crăciun

Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology.Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis.The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors.

1999 ◽  
Vol 82 (12) ◽  
pp. 1764-1767 ◽  
Author(s):  
Dean Cain ◽  
David Sane ◽  
Reidar Wallin

SummaryMatrix GLA protein (MGP) is an inhibitor of calcification in the arterial wall and its activity is dependent upon vitamin K-dependent γ-carboxylation. This modification is carried out by a warfarin sensitive enzyme system that converts specific Glu residues to γ-carboxyglutamic acid (GLA) residues. Recent studies have demonstrated that the γ-carboxylation system in the arterial wall, in contrast to that in the liver, is unable to use vitamin K as an antidote to warfarin.By use of immunohistochemistry we demonstrate that MGP is expressed in the arterial wall and immunocytochemistry localized the MGP precursors to the endoplasmic reticulum in vascular smooth muscle cells. Resting smooth vascular muscle cells in the aortic wall and proliferating cells from explants of the aorta have all the enzymes needed for γ-carboxylation of MGP. However, when compared to the liver system, expression of the enzymes of the γ-carboxylation system in vascular smooth muscle cells is different. Of particular interest is the finding that the specific activity of the warfarin sensitive enzyme vitamin K epoxide reductase is 3-fold higher in vascular smooth muscle cells than in liver. DT-diaphorase, which catalyses the antidotal pathway for vitamin K reduction in liver, is 100-fold less active in resting vascular smooth muscle cells than in liver. Data obtained from an in vitro γ-carboxylation system suggest that the antidotal pathway catalyzed by DT-diaphorase in the vessel wall is unable to provide the carboxylase with enough reduced vitamin K to trigger γ-carboxylation of MGP. This finding provides an explanation to the inability of vitamin K to work as an antidote to warfarin intoxication of the arterial wall. Therefore the vitamin K dependent γ-carboxylation system in the arterial wall share a common feature with the system in bone cells by being unable to utilize vitamin K as an antidote.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Michał Wiciński ◽  
Bartosz Malinowski ◽  
Paweł Rajewski ◽  
Paweł Szychta ◽  
Eryk Wódkiewicz ◽  
...  

Resveratrol (3,5,4′-trihydroxystilbene) is a chemical compound belonging to the group of polyphenols and flavonoids. The aim of the present study was to determine the influence of resveratrol application along with certain modulating factors, such as 8Br-cGMP-activator of cGMP-dependent protein kinases, HA-1077-Rho-kinase inhibitor, and Bay K8644-calcium channel agonist, on VMSCs constriction triggered by phenylephrine. Resveratrol at a dose of 10 mg/kg/24 h administered for 4 weeks reduced the reactivity of the arteries to the pressure action of catecholamines. Tests performed after four weeks of resveratrol administration showed that 8Br-cGMP at the concentrations of 0.01 mM/l and 0.1 mM/l intensifies this effect. Simultaneous resveratrol and Bay K8644 administration led to a significant decrease in contractility compared to the vessels collected from animals (Res−). This effect was dependent on the concentration of Bay K8644. Resveratrol seems to be counteractive against Bay K8644 by blocking L-type calcium channels. As the concentration of HA-1077 increased, there was a marked hyporeactivity of the vessels to the pressure effects of phenylephrine. The results indicate synergy between resveratrol and Rho-kinase inhibition.


2020 ◽  
Vol 22 (1) ◽  
pp. 278
Author(s):  
Jianjian Sun ◽  
Peilu She ◽  
Xu Liu ◽  
Bangjun Gao ◽  
Daqin Jin ◽  
...  

Pseudoxanthoma elasticum (PXE), caused by ABCC6/MRP6 mutation, is a heritable multisystem disorder in humans. The progressive clinical manifestations of PXE are accompanied by ectopic mineralization in various connective tissues. However, the pathomechanisms underlying the PXE multisystem disorder remains obscure, and effective treatment is currently available. In this study, we generated zebrafish abcc6a mutants using the transcription activator-like effector nuclease (TALEN) technique. In young adult zebrafish, abcc6a is expressed in the eyes, heart, intestine, and other tissues. abcc6a mutants exhibit extensive calcification in the ocular sclera and Bruch’s membrane, recapitulating part of the PXE manifestations. Mutations in abcc6a upregulate extracellular matrix (ECM) genes, leading to fibrotic heart with reduced cardiomyocyte number. We found that abcc6a mutation reduced levels of both vitamin K and pyrophosphate (PPi) in the serum and diverse tissues. Vitamin K administration increased the gamma-glutamyl carboxylated form of matrix gla protein (cMGP), alleviating ectopic calcification and fibrosis in vertebrae, eyes, and hearts. Our findings contribute to a comprehensive understanding of PXE pathophysiology from zebrafish models.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 737
Author(s):  
Marko Kumric ◽  
Josip A. Borovac ◽  
Tina Ticinovic Kurir ◽  
Dinko Martinovic ◽  
Ivan Frka Separovic ◽  
...  

Coronary artery disease (CAD) is widely recognized as one of the most important clinical entities. In recent years, a large body of accumulated data suggest that coronary artery calcification, a process highly prevalent in patients with CAD, occurs via well-organized biologic processes, rather than passively, as previously regarded. Matrix Gla protein (MGP), a vitamin K-dependent protein, emerged as an important inhibitor of both intimal and medial vascular calcification. The functionality of MGP hinges on two post-translational modifications: phosphorylation and carboxylation. Depending on the above-noted modifications, various species of MGP may exist in circulation, each with their respective level of functionality. Emerging data suggest that dysfunctional species of MGP, markedly, dephosphorylated-uncarboxylated MGP, might find its application as biomarkers of microvascular health, and assist in clinical decision making with regard to initiation of vitamin K supplementation. Hence, in this review we summarized the current knowledge with respect to the role of MGP in the complex network of vascular calcification with concurrent inferences to CAD. In addition, we discussed the effects of warfarin use on MGP functionality, with concomitant implications to coronary plaque stability.


1994 ◽  
Vol 109 (1-2) ◽  
pp. 101
Author(s):  
H. Hao ◽  
S. Hirota ◽  
M. Imakita ◽  
H. Ishibashi-Ueda ◽  
S. Kyotani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document