ectopic mineralization
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 41)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
pp. 2103693
Author(s):  
Min‐juan Shen ◽  
Kai Jiao ◽  
Chen‐yu Wang ◽  
Hermann Ehrlich ◽  
Mei‐chen Wan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Liu Yunfeng ◽  
Han Tongyan ◽  
Wang Jing ◽  
Tong Xiaomei

Idiopathic infantile arterial calcification (IIAC), also known as generalized arterial calcification of infancy (GACI), is a heritable ectopic mineralization disorder that results in diffuse arterial calcifications and or stenosis, which are attributed to mutations in the ENPP1 gene. In this case study, we report the development of IIAC in a 2-month-old male preterm infant. The patient presented with severe hypertension and seizures, which revealed diffused calcifications and c.130C > T and c.1112A > T mutations in the ENPP1 gene. With biphosphonate, antihypertensive, and control epilepsy therapy, his blood pressure was maintained at 110–120/50–60 mmHg. Intellectual motor development retardation was anticipated in this patient. To the best of our knowledge, this is the first case in which a novel c.130C > T mutation in the ENPP1 gene has been identified, and the administration of bisphosphonates to patients with IIAC has been assessed.


Author(s):  
Siddharth Shanbhag ◽  
Carina Kampleitner ◽  
Samih Mohamed-Ahmed ◽  
Mohammed Ahmad Yassin ◽  
Harsh Dongre ◽  
...  

Three-dimensional (3D) spheroid culture can promote the osteogenic differentiation and bone regeneration capacity of mesenchymal stromal cells (MSC). Gingiva-derived progenitor cells (GPC) represent a less invasive alternative to bone marrow MSC (BMSC) for clinical applications. The aim of this study was to test the in vivo bone forming potential of human GPC and BMSC cultured as 3D spheroids or dissociated cells (2D). 2D and 3D cells encapsulated in constructs of human platelet lysate hydrogels (HPLG) and 3D-printed poly (L-lactide-co-trimethylene carbonate) scaffolds (HPLG-PLATMC) were implanted subcutaneously in nude mice; cell-free HPLG-PLATMC constructs served as a control. Mineralization was assessed using micro-computed tomography (µCT), histology, scanning electron microscopy (SEM) and in situ hybridization (ISH). After 4–8 weeks, µCT revealed greater mineralization in 3D-BMSC vs. 2D-BMSC and 3D-GPC (p < 0.05), and a similar trend in 2D-GPC vs. 2D-BMSC (p > 0.05). After 8 weeks, greater mineralization was observed in cell-free constructs vs. all 2D- and 3D-cell groups (p < 0.05). Histology and SEM revealed an irregular but similar mineralization pattern in all groups. ISH revealed similar numbers of 2D and 3D BMSC/GPC within and/or surrounding the mineralized areas. In summary, spheroid culture promoted ectopic mineralization in constructs of BMSC, while constructs of dissociated GPC and BMSC performed similarly. The combination of HPLG and PLATMC represents a promising scaffold for bone tissue engineering applications.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12421
Author(s):  
Lin Zhu ◽  
Jingyi Li ◽  
Yanmei Dong

Healthy pulp tissue plays an important role in normal function and long-term retention of teeth. Mesoporous bioactive glass (MBG) as a kind of regenerative biomaterials shows the potential in preserving the vital pulp. In this study, MBG prepared by organic template method combined with sol-gel method were used in human dental pulp cell culture and ectopic mineralization experiment. Real-Time PCR was used to explore its ability to induce odontogenic differentiation of dental pulp cells. MBG and rat crowns were implanted under the skin of nude mice for 4 weeks to observe the formation of pulp dentin complex. We found that MBG can release Si and Ca ions and has a strong mineralization activity in vitro. The co-culture of MBG with human dental pulp cells promoted the expression of DMP-1 (dentin matrix protein-1) and ALP (alkalinephosphatase) without affecting cell proliferation. After 4 weeks of subcutaneous implantation in nude mice, the formation of hard tissue with regular structure under the material could be seen, and the structure was similar to dentin tubules. These results indicate that MBG can induce the differentiation of dental pulp cells and the formation of dental pulp-dentin complex and has the potential to promote the repair and regeneration of dental pulp injuries.


2021 ◽  
Author(s):  
Paige Boneski ◽  
Vedavathi Madhu ◽  
Ryan Tomlinson ◽  
Koen Van de Wetering ◽  
Irving Shapiro ◽  
...  

Chronic low back pain is a highly prevalent health condition intricately linked to intervertebral disc degeneration. One of the prominent features of disc degeneration that is commonly observed with aging is dystrophic calcification. ATP-binding cassette sub-family C member 6 (ABCC6), a presumed ATP efflux transporter, is a key regulator of systemic levels of the mineralization inhibitor pyrophosphate (PPi). Mutations in ABCC6 result in pseudoxanthoma elasticum (PXE), a progressive human metabolic disorder characterized by mineralization of the skin and elastic tissues. The implications of ABCC6 loss-of-function on pathological mineralization of structures in the spine, however, are unknown. Using the ABCC6 -/- mouse model of PXE, we investigated age-dependent changes in the vertebral bone and intervertebral disc. ABCC6 -/- mice exhibited diminished trabecular bone quality parameters at 7-months which remained significantly lower than the wild-type mice at 18 months-of-age. ABCC6 -/- vertebrae showed increased TRAP staining along with decreased TNAP staining, suggesting an enhanced bone resorption as well as decreased bone formation. Surprisingly, however, loss of ABCC6 resulted only in a mild, aging disc phenotype without evidence of dystrophic mineralization. Finally, we tested the utility of oral K3Citrate to treat the vertebral phenotype since it is shown to regulate hydroxyapatite mechanical behavior. The treatment resulted in inhibition of osteoclastic response and an early improvement in mechanical properties of the bone underscoring the promise of potassium citrate as a therapeutic agent. Our data suggest that although ectopic mineralization is tightly regulated in the disc, loss of ABCC6 compromises vertebral bone quality and dysregulates osteoblast-osteoclast coupling.


Author(s):  
Amir Hossein Saeidian ◽  
Leila Youssefian ◽  
Jianhe Huang ◽  
Andrew Touati ◽  
Hassan Vahidnezhad ◽  
...  

Author(s):  
Eva Y. G. De Vilder ◽  
Ludovic Martin ◽  
Georges Lefthériotis ◽  
Paul Coucke ◽  
Filip Van Nieuwerburgh ◽  
...  

Introduction: Pseudoxanthoma elasticum (PXE), an ectopic mineralization disorder caused by pathogenic ABCC6 variants, is characterized by skin, ocular and cardiovascular (CV) symptoms. Due to striking phenotypic variability without genotype-phenotype correlations, modifier genes are thought to play a role in disease variability. In this study, we evaluated the collective modifying effect of rare variants on the cardiovascular phenotype of PXE.Materials and Methods: Mixed effects of rare variants were assessed by Whole Exome Sequencing in 11 PXE patients with an extreme CV phenotype (mild/severe). Statistical analysis (SKAT-O and C-alpha testing) was performed to identify new modifier genes for the CV PXE phenotype and enrichment analysis for genes significantly associated with the severe cohort was used to evaluate pathway and gene ontology features.Results Respectively 16 (SKAT-O) and 74 (C-alpha) genes were significantly associated to the severe cohort. Top significant genes could be stratified in 3 groups–calcium homeostasis, association with vascular disease and induction of apoptosis. Comparative analysis of both analyses led to prioritization of four genes (NLRP1, SELE, TRPV1, and CSF1R), all signaling through IL-1B.Conclusion This study explored for the first time the cumulative effect of rare variants on the severity of cardiovascular disease in PXE, leading to a panel of novel candidate modifier genes and disease pathways. Though further validation is essential, this panel may aid in risk stratification and genetic counseling of PXE patients and will help to gain new insights in the PXE pathophysiology.


2021 ◽  
pp. 002203452110123
Author(s):  
C. Nottmeier ◽  
N. Liao ◽  
A. Simon ◽  
M.G. Decker ◽  
J. Luther ◽  
...  

The WNT/β-catenin signaling pathway plays a central role in the biology of the periodontium, yet the function of specific extracellular WNT ligands remains poorly understood. By using a Wnt1-inducible transgenic mouse model targeting Col1a1-expressing alveolar osteoblasts, odontoblasts, and cementoblasts, we demonstrate that the WNT ligand WNT1 is a strong promoter of cementum and alveolar bone formation in vivo. We induced Wnt1 expression for 1, 3, or 9 wk in Wnt1Tg mice and analyzed them at the age of 6 wk and 12 wk. Micro–computed tomography (CT) analyses of the mandibles revealed a 1.8-fold increased bone volume after 1 and 3 wk of Wnt1 expression and a 3-fold increased bone volume after 9 wk of Wnt1 expression compared to controls. In addition, the alveolar ridges were higher in Wnt1Tg mice as compared to controls. Nondecalcified histology demonstrated increased acellular cementum thickness and cellular cementum volume after 3 and 9 wk of Wnt1 expression. However, 9 wk of Wnt1 expression was also associated with periodontal breakdown and ectopic mineralization of the pulp. The composition of this ectopic matrix was comparable to those of cellular cementum as demonstrated by quantitative backscattered electron imaging and immunohistochemistry for noncollagenous proteins. Our analyses of 52-wk-old mice after 9 wk of Wnt1 expression revealed that Wnt1 expression affects mandibular bone and growing incisors but not molar teeth, indicating that Wnt1 influences only growing tissues. To further investigate the effect of Wnt1 on cementoblasts, we stably transfected the cementoblast cell line (OCCM-30) with a vector expressing Wnt1-HA and performed proliferation as well as differentiation experiments. These experiments demonstrated that Wnt1 promotes proliferation but not differentiation of cementoblasts. Taken together, our findings identify, for the first time, Wnt1 as a critical regulator of alveolar bone and cementum formation, as well as provide important insights for harnessing the WNT signal pathway in regenerative dentistry.


2021 ◽  
Vol 141 (5) ◽  
pp. S30
Author(s):  
J.D. Jacobs ◽  
Q. Li ◽  
Z. Cheng ◽  
K. O'Brien ◽  
D. Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document