scholarly journals Competitive Equilibrium Electricity Market Model with Improved Adequacy of Mathematical Description of Generating Companies, System Operator and Electrical Network.

2016 ◽  
Vol 38 (4) ◽  
pp. 49-64 ◽  
Author(s):  
S.Ye. SAUKH ◽  
2016 ◽  
Vol 19 ◽  
pp. 74-80
Author(s):  
Ralf Böhm ◽  
Ralph M. Schaidhauf ◽  
Robert Spanheimer ◽  
Diana Maria Erdmann ◽  
Jörg Franke

Due to guaranteed feed-in tariffs under the Renewable Energy Act and the feed-in precedence of renewable power generation plants the operation of biogas plants in Germany is currently plannable and economically advantageous. However, it is foreseeable that without this subvention biogas plants cannot compete with other regenerative plants such as photovoltaic and wind power plants on the open electricity market. Accordingly, it is of great importance for biogas plant operators to identify and occupy suitable niches to make full use of the unique features of their plants. Because of their predictable availability, those plants can particularly benefit of earning opportunities in times of high demand and contribute to grid stabilization. In order to keep the effort for plant operators as low as possible the automation of existing biogas plants can be extended and enabled to communicate with market platforms or control centers of the distribution system operator. Thus biogas plants can contribute to balancing group compensation not only for accounting purposes but factual by appropriate feed-in into the electrical network in consideration of actual demand.


Memorias ◽  
2018 ◽  
pp. 58-66
Author(s):  
Johnny Valencia ◽  
Gerard Olivar ◽  
Johan Manuel Redondo ◽  
Danny Ibarra Vega ◽  
Carlos Peña Rincón

In this paper, we show the preliminary results in a proposed a model for the supply and demand of electricity in a domestic market based on system dynamics. Additionally, the model indicates piecewise smooth differential equations arising from the diagram of flows and levels, using dynamical systems theory for the study of the stability of the equilibrium points that have such a system. A bifurcation analysis approach is proposed to define and understand the complex behavior. Until now, no work has been reported related to this topic using bifurcations criteria. The growing interest in personal ways of self-generation using renewable sources can lead the national grid to a standstill and low investment in the system. However, it is essential to preserve the national network as a power supply support to domestic and enterprise demand. To understand this scenario, we include an analysis of zero-rate demand growth. Under this hypothesis, a none smooth bifurcation appears related to a policy which involves the variation of the capacity charge. As a first significant result, we found that it is possible to preserve the investments in the market since, through the capacity charge parameter, the system dynamics can be controlled. Then, from a business approach, it is necessary to know the effects of the capacity charge as the strategic policy in the system generation price scheme.


Author(s):  
Simona Bigerna ◽  
Carlo Andrea Bollino ◽  
Maria Chiara D'Errico ◽  
Paolo Polinori

2018 ◽  
Vol 30 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Paraskevas Panagiotidis ◽  
Andrew Effraimis ◽  
George A Xydis

The main aim of this work is to reduce electricity consumption for consumers with an emphasis on the residential sector in periods of increased demand. Efforts are focused on creating a methodology in order to statistically analyse energy demand data and come up with forecasting methodology/pattern that will allow end-users to organize their consumption. This research presents an evaluation of potential Demand Response programmes in Greek households, in a real-time pricing market model through the use of a forecasting methodology. Long-term Demand Side Management programs or Demand Response strategies allow end-users to control their consumption based on the bidirectional communication with the system operator, improving not only the efficiency of the system but more importantly, the residential sector-associated costs from the end-users’ side. The demand load data were analysed and categorised in order to form profiles and better understand the consumption patterns. Different methods were tested in order to come up with the optimal result. The Auto Regressive Integrated Moving Average modelling methodology was selected in order to ensure forecasts production on load demand with the maximum accuracy.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2946
Author(s):  
Jun Maekawa ◽  
Koji Shimada

Renewable energy sources produce less environmental impact and have little marginal cost. Thus, because of these characteristics, it is desirable to disseminate it for the purpose of economic efficiency. Because of the uncertainty in the supply of renewable energy and the special feature of electricity as a good, such as merit order curve, introducing forward markets is an essential factor in a liberalized market. In European countries, which have already established several mechanisms for managing liquidity including markets with several timelines, the market liquidity invites the investor to perform some speculative action. We present a simple electric power market model to analyze the speculative actions of electricity suppliers and the price effect of such actions. Moreover, we found that the speculative action improves the inelasticity of the demand in electricity market.


2019 ◽  
Vol 75 (1) ◽  
pp. 183-213
Author(s):  
Christian Gambardella ◽  
Michael Pahle ◽  
Wolf-Peter Schill

AbstractWe analyze the gross welfare gains from real-time retail pricing in electricity markets where carbon taxation induces investment in variable renewable technologies. Applying a stylized numerical electricity market model, we find a U-shaped association between carbon taxation and gross welfare gains. The benefits of introducing real-time pricing can accordingly be relatively low at relatively high carbon taxes and vice versa. The non-monotonous change in welfare gains can be explained by corresponding changes in the inefficiency arising from “under-consumption” during low-price periods rather than by changes in wholesale price volatility. Our results may cast doubt on the efficiency of ongoing roll-outs of advanced meters in many electricity markets, since net benefits might only materialize at relatively high carbon tax levels and renewable supply shares.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.


Sign in / Sign up

Export Citation Format

Share Document