scholarly journals Effects of a Delayed Expansion of Interconnector Capacities in a High RES-E European Electricity System

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3098
Author(s):  
Ritter ◽  
Meyer ◽  
Koch ◽  
Haller ◽  
Bauknecht ◽  
...  

In order to achieve a high renewable share in the electricity system, a significant expansion of cross-border exchange capacities is planned. Historically, the actual expansion of interconnector capacities has significantly lagged behind the planned expansion. This study examines the impact that such continued delays would have when compared to a strong interconnector expansion in an ambitious energy transition scenario. For this purpose, scenarios for the years 2030, 2040, and 2050 are examined using the electricity market model PowerFlex EU. The analysis reveals that both CO2 emissions and variable costs of electricity generation increase if interconnector expansion is delayed. This effect is most significant in the scenario year 2050, where lower connectivity leads roughly to a doubling of both CO2 emissions and variable costs of electricity generation. This increase results from a lower level of European electricity trading, a curtailment of electricity from a renewable energy source (RES-E), and a corresponding higher level of conventional electricity generation. Most notably, in Southern and Central Europe, less interconnection leads to higher use of natural gas power plants since less renewable electricity from Northern Europe can be integrated into the European grid.

2018 ◽  
Vol 10 (7) ◽  
pp. 2541 ◽  
Author(s):  
Jonas Savelsberg ◽  
Moritz Schillinger ◽  
Ingmar Schlecht ◽  
Hannes Weigt

Hydropower represents an important pillar of electricity systems in many countries. It not only plays an important role in mitigating climate change, but is also subject to climate-change impacts. In this paper, we use the Swiss electricity market model Swissmod to study the effects of changes in water availability due to climate change on Swiss hydropower. Swissmod is an electricity dispatch model with a plant-level representation of 96% of Swiss hydropower plants and their interrelations within cascade structures. Using this detailed model in combination with spatially disaggregated climate-change runoff projections for Switzerland, we show that climate change has ambiguous impacts on hydropower and on the overall electricity system. Electricity prices and overall system costs increase under dry conditions and decrease under average or wet conditions. While the change of seasonal patterns, with a shift to higher winter runoff, has positive impacts, the overall yearly inflow varies under hydrological conditions. While average and wet years yield an increase in inflows and revenues, dry years become drier, resulting in the opposite effect. Even though different in magnitude, the direction of impacts persists when applying the same changes in inflows to the 2050 electricity system.


Author(s):  
Andreas Schroeder

This article presents an electricity dispatch model with endogenous electricity generation capacity expansion for Germany over the horizon 2035. The target is to quantify how fuel and carbon price risk impacts investment incentives of thermal power plants. Results point to findings which are in line with general theory: Accounting for stochasticity increases investment levels overall and the investment portfolio tends to be more diverse.


Author(s):  
Stuart M. Cohen ◽  
Michael E. Webber ◽  
Gary T. Rochelle

Carbon dioxide (CO2) capture with amine scrubbing at coal-fired power plants can remove 90% of the CO2 from flue gas, but operational energy requirements reduce net electrical output by 20–30%. Temporarily reducing the load on energy intensive components of the amine scrubbing process could temporarily increase power output and allow additional electricity sales when prices are high. Doing so could entail additional CO2 emissions, or amine solvent storage can be utilized to allow increased power output without additional CO2 emissions. Price-responsive flexible capture is studied for $0–200/tCO2 and $2–11/MMBTU natural gas using a nominal 500 MW coal-fired facility in the 2010 Electric Reliability Council of Texas (ERCOT) grid. CO2 capture systems use a 7 molal monoethanolamine (MEA) solvent. Venting additional CO2 while increasing electrical output provides significant benefit only at $30–60/tCO2 and when natural gas prices exceed $4/MMBTU. Solvent storage can improve profitability with CO2 capture at higher CO2 emissions penalties, but primarily at low-to-moderate natural gas prices when power plant capacity factor is less than 90%.


2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5432
Author(s):  
Martina Crimmann ◽  
Reinhard Madlener

In this paper, we investigate the potentials of distributed generation (DG) in a medium-sized Swiss city. We show the role of private households in the sustainable energy transition process induced by Swiss energy policy. For the analysis, we define six scenarios that enable us to study the potentials and impacts of different combinations of DG technologies in terms of costs, CO2 emissions, and amounts and shares of DG provided by non-industrial end-users (essentially private households and the services sector). Three variants are investigated, one with real electricity costs and CO2 emissions, one with increased electricity costs (e.g., construction of new power plants), and one with increased CO2 emissions (e.g., due to the planned nuclear phase-out in Switzerland). We find that non-industrial entities can play an important role as prosumers. They mitigate the need for centralized generation. Within a scenario where the non-industrial energy end-users install water-water heat pumps and photovoltaics, a total reduction of the gas procurement from the grid is possible whereas the electricity demand from the grid increases by 24%. This scenario reveals higher DG electricity costs in comparison to conventional electricity supply, but the total costs of energy supply decrease due to the elimination of gas supply, and the CO2 emissions can be reduced by 68%.


2019 ◽  
Vol 11 (4) ◽  
pp. 1035 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Jeong-Joon Yu ◽  
Seung-Hoon Yoo

In an era of energy transition involving an increase in renewable energy and a reduction in coal-fired power generation and nuclear power generation, the role of combined heat and power (CHP) as a bridging energy is highly emphasized. This article attempts to look empirically into the impact of increasing the share of renewable energy in total electricity generation on CHP share in total electricity generation in a cross-country context. Data from 35 countries during the period 2009–2015 were used, and the least absolute deviations estimator was applied to obtain a more robust parameter estimate. The results showed that a 1%p increase in the share of renewable energy significantly increased the CHP share by 0.87%p. Therefore, the hypothesis that CHP serves as bridge energy in the process of energy transition was established.


The paper is devoted to analysis of functional peculiarities of thermal power plants in Ukraine. In the course of the study, key determinants of the sustainable development of domestic electricity generation were identified in the context of transition to a new market model. The preconditions of activation and support of the sustainable development concept implementation process in the modern business practice of the energy sector enterprises within the Ukrainian economy are outlined. The theoretical and practical bases for ensuring the sustainable development of energy in relation to other United Nations Declarations of Sustainable Development are indicated. The comparative estimation of the efficiency level of state policy in scope of energy independence and resource conservation with the use of a complex indicator of GDP energy intensity is given. On the basis of international and domestic statistical data the dynamics of volumes of electricity production in Ukraine for the period of 1990-2017 as well as the structure of electricity generation by type of generation were analyzed. The dynamics of electric power generation in Ukraine by types of raw materials was presented in complex with the dynamics of coal consumption and production for the corresponding period. The peculiarities of thermal power plants functioning in comparison with other power generating enterprises in modern conditions are specified. The key element of Ukraine’s energy independence – the volume of proven coal reserves – is a prerequisite for the efficient functioning of domestic thermal power plants. The pricing features in the sphere of electricity production and sales are outlined, in particular, the structure of market rate and the price of electricity sales by producers to the Wholesale Market are presented. The significance of the innovation factor in the process of improving the efficiency of thermal power plants functioning has been substantiated, taking into account the economic, social and environmental aspects of their production and economic activity.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2281-2296
Author(s):  
Nikola Rakic ◽  
Dusan Gordic ◽  
Vanja Sustersic ◽  
Mladen Josijevic ◽  
Milun Babic

The use of renewable energy sources for electricity generation in the Western Balkan countries is analyzed in this review paper. Since those countries are part of EU or intend to be, data for Western Balkan are also compared with data for EU-28. The first part of the paper presents a brief overview of main promotion mechanism for electricity generation from renewable energy sources. As a dominant support policy, the feed-in tariff is more elaborated as an incentive measure and a de?tailed overview of the amount of tariffs and quotas for dominant technologies in the Western Balkan countries is presented. Furthermore, the current state of installed capacities and annual productions of three particular renewable electricity technologies (small hydro power, wind power, and solar photovoltaic) are analyzed in detailes. Based on presented data, there is a discussion and consideration of the impact of incentive measures on the electricity market and power production from renewable sources.


2021 ◽  
Vol 13 (19) ◽  
pp. 10836
Author(s):  
Kelly D’Alessandro ◽  
Andrew Chapman ◽  
Paul Dargusch

This research considered changes in monthly electricity generation and demand in Japan during the COVID-19 pandemic. Observed network electricity demand and generation type for the January–June 2020 period were compared to forecast values (using a triple exponential smoothing method) based on trends established from 2016 to 2019. Regional level electricity demand data showed little variation from expected trends for domestic energy users, but lower than expected business and industrial network demand, particularly in the 50–2000 kW cohort. Electricity demand was most likely to deviate from existing trends in May 2020, which is in-line with the voluntary lockdown activities. These results are consistent with observed patterns from other international studies into the impact of COVID-19 on electricity demand. Generation was found to be reduced in May and June of 2020, without significant impacts to the generation makeup, largely due to Japan’s positioning within a broader energy transition context. These findings validate previous studies and add to the broader discussions on drivers and the rationale for electricity demand behaviors between user scales. Previous studies examined the electricity demand reductions of full and partial lockdowns. This analysis adds to this discourse by documenting the impacts of a voluntary lockdown.


Sign in / Sign up

Export Citation Format

Share Document