scholarly journals Statistical description of nonunimodality phenomena of electric breakdown voltages distribution of polymer coatings

2021 ◽  
Vol 28 (2) ◽  
1958 ◽  
Vol 4 (40) ◽  
pp. 192-194
Author(s):  
A.E.D. Heylen
Keyword(s):  

2021 ◽  
Author(s):  
Hongyao Zhou ◽  
Haodong Liu ◽  
Xing Xing ◽  
Zijun Wang ◽  
Sicen Yu ◽  
...  

Protective Polymer Coatings (PPCs) protect lithium metal anodes in rechargeable batteries to stabilize the Li/electrolyte interface and to extend the cycle life by reducing parasitic reactions and improving the lithium deposition morphology.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2551
Author(s):  
Wojciech Kajzer ◽  
Janusz Szewczenko ◽  
Anita Kajzer ◽  
Marcin Basiaga ◽  
Joanna Jaworska ◽  
...  

In this study, we aimed to determine the effect of long-term exposure to artificial urine on the physical properties of CoCrMo alloy with biodegradable heparin-releasing polymeric coatings. Variants of polymer coatings of poly(L,L-lactide-ɛ-caprolactone) (P(L,L-L/CL)) and poly(D,L-lactide-ɛ-caprolactone) (P(D,L-L/CL)) constituting the base for heparin-releasing (HEP) polyvinyl alcohol (PVA) coatings were analyzed. The coatings were applied by the dip-coating method. Heparin was used to counteract the incrustation process in the artificial urine. The study included tests of wettability, resistance to pitting and crevice corrosion, determination of the mass density of metal ions penetrating into the artificial urine, and the kinetics of heparin release. In addition, microscopic observations of surface roughness and adhesion to the metal substrate were performed. Electrolytically polished CoCrMo samples (as a reference level) and samples with polymer coatings were used for the tests. The tests were conducted on samples in the initial state and after 30, 60, and 90 days of exposure to artificial urine. The analysis of the test results shows that the polymer coatings contribute by improving the resistance of the metal substrate to pitting and crevice corrosion in the initial state and reducing (as compared with the metal substrate) the mass density of metal ion release into the artificial urine. Moreover, the PVA + HEP coating, regardless of the base polymer coatings used, contributes to a reduction in the incrustation process in the first 30 days of exposure to the artificial urine.


Sign in / Sign up

Export Citation Format

Share Document