scholarly journals Barrier and Superexchange Models for the Analysis of Tunnelling Current in Molecular Junctions ‘Metal–Molecular Wire–Metal’

2020 ◽  
Vol 18 (3) ◽  
2015 ◽  
Vol 51 (14) ◽  
pp. 2921-2924 ◽  
Author(s):  
Alireza Foroushani ◽  
Yuanchao Zhang ◽  
Da Li ◽  
Motilal Mathesh ◽  
Hongbin Wang ◽  
...  

The addition of copper ions induces the formation of GNP/l-cysteine/Cu2+/l-cysteine/GNP molecular junctions and generates a significant decrease in the resistance through the networks.


2019 ◽  
Author(s):  
Saman Naghibi ◽  
Ali K. Ismael ◽  
Andrea Vezzoli ◽  
Mohsin K. Al-Khaykanee ◽  
Xijia Zheng ◽  
...  

<b>Control of quantum interference features</b>: molecular junctions incorporating pyrrolodipyridine-based molecular wires were fabricated by scanning probe methods. Quantum interference effects were introduced by employing <i>meta</i>-connected molecules, and modulated in magnitude by changing the substituent on the pyrrolic N. Dramatic changes in molecular conductance and DFT transport calculations demonstrate the storng effect that small changes in electronic density can have on the overall conductance of a molecular wire.


2019 ◽  
Author(s):  
Saman Naghibi ◽  
Ali K. Ismael ◽  
Andrea Vezzoli ◽  
Mohsin K. Al-Khaykanee ◽  
Xijia Zheng ◽  
...  

<b>Control of quantum interference features</b>: molecular junctions incorporating pyrrolodipyridine-based molecular wires were fabricated by scanning probe methods. Quantum interference effects were introduced by employing <i>meta</i>-connected molecules, and modulated in magnitude by changing the substituent on the pyrrolic N. Dramatic changes in molecular conductance and DFT transport calculations demonstrate the storng effect that small changes in electronic density can have on the overall conductance of a molecular wire.


2020 ◽  
Vol 8 (2) ◽  
pp. 672-682 ◽  
Author(s):  
Enrique Escorihuela ◽  
Pilar Cea ◽  
Sören Bock ◽  
David C. Milan ◽  
Saman Naghibi ◽  
...  

The introduction of methylthioethers to the molecular wire 1,4-bis(pyridylethynyl)benzene gives rise to a prototypical one with a multipodal surface contacting motif that do not perturb the favourable electrical characteristics of the pyridyl group.


2018 ◽  
Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Brian Siemons ◽  
Nathaniel Huebsch ◽  
Kevin Healy ◽  
...  

<div> <p>The ability to non-invasively monitor membrane potential dynamics in excitable cells like neurons and cardiomyocytes promises to revolutionize our understanding of the physiology and pathology of the brain and heart. Here, we report the design, synthesis, and application of a new class of fluorescent voltage indicator that makes use of a fluorene-based molecular wire as a voltage sensing domain to provide fast and sensitive measurements of membrane potential in both mammalian neurons and human-derived cardiomyocytes. We show that the best of the new probes, fluorene VoltageFluor 2 (fVF 2) readily reports on action potentials in mammalian neurons, detects perturbations to cardiac action potential waveform in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, shows a substantial decrease in phototoxicity compared to existing molecular wire-based indicators, and can monitor cardiac action potentials for extended periods of time. Together, our results demonstrate the generalizability of a molecular wire approach to voltage sensing and highlights the utility of fVF 2 for interrogating membrane potential dynamics.</p> </div>


Author(s):  
Marcus Edwards ◽  
Gaye White ◽  
Julea Butt ◽  
David J. Richardson ◽  
Thomas A. Clarke
Keyword(s):  

Nanoscale ◽  
2021 ◽  
Author(s):  
Louis Thomas ◽  
Imane Arbouch ◽  
David Guérin ◽  
Xavier Wallart ◽  
Colin van Dyck ◽  
...  

We report the formation of self-assembled monolayers of a molecular photoswitch (azobenzene-bithiophene derivative, AzBT) on cobalt via a thiol covalent bond. We study the electrical properties of the molecular junctions...


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


Sign in / Sign up

Export Citation Format

Share Document