New Molecular Scaffolds for Fluorescent Voltage Indicators

Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Brian Siemons ◽  
Nathaniel Huebsch ◽  
Kevin Healy ◽  
...  

<div> <p>The ability to non-invasively monitor membrane potential dynamics in excitable cells like neurons and cardiomyocytes promises to revolutionize our understanding of the physiology and pathology of the brain and heart. Here, we report the design, synthesis, and application of a new class of fluorescent voltage indicator that makes use of a fluorene-based molecular wire as a voltage sensing domain to provide fast and sensitive measurements of membrane potential in both mammalian neurons and human-derived cardiomyocytes. We show that the best of the new probes, fluorene VoltageFluor 2 (fVF 2) readily reports on action potentials in mammalian neurons, detects perturbations to cardiac action potential waveform in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, shows a substantial decrease in phototoxicity compared to existing molecular wire-based indicators, and can monitor cardiac action potentials for extended periods of time. Together, our results demonstrate the generalizability of a molecular wire approach to voltage sensing and highlights the utility of fVF 2 for interrogating membrane potential dynamics.</p> </div>

2018 ◽  
Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Brian Siemons ◽  
Nathaniel Huebsch ◽  
Kevin Healy ◽  
...  

<div> <p>The ability to non-invasively monitor membrane potential dynamics in excitable cells like neurons and cardiomyocytes promises to revolutionize our understanding of the physiology and pathology of the brain and heart. Here, we report the design, synthesis, and application of a new class of fluorescent voltage indicator that makes use of a fluorene-based molecular wire as a voltage sensing domain to provide fast and sensitive measurements of membrane potential in both mammalian neurons and human-derived cardiomyocytes. We show that the best of the new probes, fluorene VoltageFluor 2 (fVF 2) readily reports on action potentials in mammalian neurons, detects perturbations to cardiac action potential waveform in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, shows a substantial decrease in phototoxicity compared to existing molecular wire-based indicators, and can monitor cardiac action potentials for extended periods of time. Together, our results demonstrate the generalizability of a molecular wire approach to voltage sensing and highlights the utility of fVF 2 for interrogating membrane potential dynamics.</p> </div>


2021 ◽  
Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Evan Miller

<p>Fluorescent voltage indicators are an attractive alternative for studying the electrical activity of excitable cells; however, the development of indicators that are both highly sensitive and low in toxicity over long-term experiments remains a challenge. Previously, we reported a fluorene-based voltage-sensitive fluorophore that exhibits much lower phototoxicity than previous voltage indicators in cardiomyocyte monolayers, but suffers from low sensitivity to membrane potential changes. Here, we report that the addition of a single vinyl spacer in the fluorene molecular wire scaffold improves the voltage sensitivity 1.5- to 3.5-fold over fluorene-based voltage probes. Furthermore, we demonstrate the improved ability of the new vinyl-fluorene VoltageFluors (v-fVFs) to monitor action potential kinetics in both mammalian neurons and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Addition of the vinyl spacer between the aniline donor and fluorene monomer results in indicators that are significantly less phototoxic in cardiomyocyte monolayers. These results demonstrate how structural modification to the voltage sensing domain have a large effect on improving the overall properties of molecular wire-based voltage indicators. </p>


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
B Alexander Yi ◽  
Joel M Kralj ◽  
Adam E Cohen

The electrically excitable properties of cardiomyocytes stem from the activity of ion channels that allow the coordinated entry of ions to generate cardiac action potentials. Disruptions in ion channel function either by drugs or gene mutations can lead to cardiac arrhythmias. The ability to screen drugs or gene mutations rapidly for effects on the cardiac action potential would be of interest for both drug discovery as well as for studies of ion channel function; however, the time-consuming and technically challenging nature of conventional patch clamping can limit the ability to perform high throughput screens. Archaerhodopsin3, or Arch, is an Archaebacterial variant of the membrane protein bacteriorhodopsin that binds a retinal fluorophore whose signal is rapidly responsive to changes in membrane potential. Here, we report the use of Arch to optically record action potentials from human induced pluripotent stem cell-derived cardiomyocytes. Human induced pluripotent stem cells that stably express Arch were generated and then differentiated into cardiomyocytes. As compared to patch clamping, Arch faithfully reproduces many of the key features of cardiac action potentials and may be a tool to be used for high throughput electrophysiological screens of cardiomyocytes.


2021 ◽  
Author(s):  
Steven Boggess ◽  
Shivaani Gandhi ◽  
Evan Miller

<p>Fluorescent voltage indicators are an attractive alternative for studying the electrical activity of excitable cells; however, the development of indicators that are both highly sensitive and low in toxicity over long-term experiments remains a challenge. Previously, we reported a fluorene-based voltage-sensitive fluorophore that exhibits much lower phototoxicity than previous voltage indicators in cardiomyocyte monolayers, but suffers from low sensitivity to membrane potential changes. Here, we report that the addition of a single vinyl spacer in the fluorene molecular wire scaffold improves the voltage sensitivity 1.5- to 3.5-fold over fluorene-based voltage probes. Furthermore, we demonstrate the improved ability of the new vinyl-fluorene VoltageFluors (v-fVFs) to monitor action potential kinetics in both mammalian neurons and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Addition of the vinyl spacer between the aniline donor and fluorene monomer results in indicators that are significantly less phototoxic in cardiomyocyte monolayers. These results demonstrate how structural modification to the voltage sensing domain have a large effect on improving the overall properties of molecular wire-based voltage indicators. </p>


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
LouJin Song ◽  
Masayuki Yazawa

Human induced pluripotent stem cell (iPSC)-based model of cardiac diseases has been proved to be useful and valuable for identifying new therapeutics. However, the use of human iPSC-based model of cardiac diseases for drug screen is hampered by the high-cost and complexity of methods used for reprogramming, in vitro differentiation, and phenotyping. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free iPSCs from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from Timothy syndrome patients into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared to controls, which were consistent with previous reports using a retroviral method for reprogramming and using an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to test potential therapeutics. With those new approaches in hand, next we plan to use the iPSC-based model of Timothy syndrome to investigate novel molecules involved in the pathogenesis of Timothy syndrome and to screen and identify new therapeutic compounds for Timothy syndrome patients.


2019 ◽  
Author(s):  
Georg Kuenze ◽  
Amanda M. Duran ◽  
Hope Woods ◽  
Kathryn R. Brewer ◽  
Eli Fritz McDonald ◽  
...  

AbstractThe voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and resting voltage sensor structures. Using molecular dynamics (MD) simulations, the models’ capability to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor – pore domain interactions were validated. Rosetta energy calculations were applied to assess the models’ utility in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants had no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural mechanisms of KCNQ1 function and can be used to generate structure-based hypotheses to explain KCNQ1 dysfunction.Author SummaryCardiac rhythm is maintained by synchronized electrical impulses conducted throughout the heart. The potassium ion channel KCNQ1 is important for the repolarization phase of the cardiac action potential that underlies these electrical impulses. Heritable mutations in KCNQ1 can lead to channel loss-of-function (LOF) and predisposition to a life-threatening cardiac arrhythmia. Knowledge of the three-dimensional structure of KCNQ1 is important to understand how mutations lead to LOF and to support structurally-guided design of new anti-arrhythmic drugs. In this work, we present the development and validation of molecular models of human KCNQ1 inferred by homology from the structure of frog KCNQ1. Models were developed for the open channel state in which potassium ions can pass through the channel and the closed state in which the channel is not conductive. Using molecular dynamics simulations, interactions in the voltage-sensing and pore domain of KCNQ1 and with the membrane lipid PIP2 were analyzed. Energy calculations for KCNQ1 mutations in the voltage-sensing domain reveled that most of the mutations that lead to LOF cause energetic destabilization of the KCNQ1 protein. The results support both the utility of the new models and growing evidence that mutation-induced protein destabilization is a common cause of KCNQ1 dysfunction.


1979 ◽  
Vol 236 (3) ◽  
pp. C103-C110 ◽  
Author(s):  
L. J. Mullins

The presence of a detectable Ca current during the excitation of a cardiac fiber implies that the Ca lost during the resting interval of the duty cycle must also be detectable. Ca outward movement appears to be effected by Na/Ca exchange when more Na enters than Ca leaves per cycle, thus making the mechanism electrogenic. Since Na/Ca exchange can move Ca either inward or outward depending on the direction of the electrochemical gradient for Na, a potential exists where there is no electric current generated by the Na/Ca exchange mechanism, i.e., a reversal potential ER. Cardiac fibers appear to have a reversal potential that is about midway between their resting membrane potential and their plateau. Carrier currents both inward and outward are therefore generated during cardiac action potentials. The implications of the conditions stated above are explored.


Sign in / Sign up

Export Citation Format

Share Document