scholarly journals COMPARATIVE ANALYSIS OF MAGNETIC SYSTEMS OF PERMANENT MAGNET MOTORS FOR TRAM

2021 ◽  
Vol 2021 (5) ◽  
pp. 27-37
Author(s):  
V.V. Grebenikov ◽  
◽  
R.V. Gamaliia ◽  
S.A. Dadychyn ◽  
◽  
...  

A numerical study of eight configurations of magnetic systems of electric motors with permanent magnets for driving a tram was carried out. The permanent magnet electric motor can be used as a high-speed electric drive to replace the existing DC electric drive of a tram, and as a low-speed gearless electric drive of a new generation tram. The most promising configurations of magnetic systems of electric motors with permanent magnets for tram drive have been determined. By varying the geometrical and winding parameters of each of the investigated models of electric motors, the mechanical characteristics are determined, at which the given torque and power are achieved in the entire range of the rotor speed. Also, a thermal calculation was performed taking into account the urban driving cycle of high-speed electric motors with air cooling by a fan and low-speed ones in liquid cooling mode. The calculation of the characteristics of the investigated electric motors was carried out in the Simcentre MotorSolve software package. References 13, figures 8, tables 3.

Author(s):  
Ömer Faruk Güney ◽  
Ahmet Çelik ◽  
Ahmet Fevzi Bozkurt ◽  
Kadir Erkan

This paper presents the electromagnetic and mechanical analysis of an axial flux permanent magnet (AFPM) motor for high speed (12000 rpm) rotor which is vertically suspended by magnetic bearings. In the analysis, a prototype AFPM motor with a double-sided rotor and a coreless stator between the rotors are considered. Firstly, electromagnetic analysis of the motor is carried out by using magnetic equivalent circuit method. Then, the rotor disk thickness is determined based on a rotor axial displacement due to the attractive force between the permanent magnets placed on opposite rotor disks. Hereafter, an analytical solution is carried out to determine the natural frequencies of the rotor-shaft system. Finally, 3D finite element analysis (FEA) is carried out to verify the analytical results and some experimental results are given to verify the analytical and numerical results and prove the stable high-speed operation.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987421
Author(s):  
Zheng Li ◽  
Lingqi Liu

This article proposes a conceptual model of a new type permanent magnet 3-degree-of-freedom motor. Its structure consists of an internal rotation module and a peripheral deflection module. It can be driven independently to achieve high-speed rotation and precise tilting of the motor. The 3-degree-of-freedom movement of the motor in space is achieved by the synchronous operation of the rotation and the deflection. In order to explore the loss problem caused by the temperature rise problem in the actual operation of the motor, the eddy current loss and core loss inside the permanent magnet of the motor are analyzed by theoretical formula and finite element method, respectively. Based on the static magnetic field, the gas flux density of two types of rotor permanent magnets in different coordinate systems is analyzed. The motor’s rotation and deflection torque characteristics are calculated using the principle of virtual displacement method. Using the auxiliary technology of the virtual prototype, according to the actual situation of the motor, the corresponding motion hinges and driving forms are summarized, and the control strategies of rotation, deflection, and rotation and deflection simultaneously are planned. The trajectory of the motor is described by observing the selected points. For the motor from product design to prototype testing and to the final processing assembly, a solid theoretical foundation is laid for the proposed work.


Author(s):  
M. H. Remlan ◽  
R. Aziz ◽  
S Salimin

<span lang="EN-MY">This paper offers the analysis of performance of Flux Reversal Permanent Magnet (FRPM) machines with different type of magnet arrangements. There are two designs that have been proposed in this report, which one of them has a pair of permanent magnets (PM) with alternate polarities place on surface of stator tooth and the polarities of two adjacent PM at these two stators are identical. This PM arrangement is called as NS-SN configuration. Second design is NS-NS configuration that has different PM polarities on different stator tooth. By comparing this PM arrangement, generally the NS-NS configuration offers high speed and power. However, the NS-SN configuration shows higher maximum torque compared to the previous design. The design process for both configurations is completely using finite element analysis (FEA) which is JMAG-Designer. To make sure the coil phase is in correct position, the design configuration with coil arrangement tests are evaluated. Finally, each flux of both designs been observed by analyse their torque with various armature current density.</span>


2021 ◽  
pp. 46-51
Author(s):  
V.A. Bovda ◽  
A.M. Bovda ◽  
I.S. Guk ◽  
V.N. Lyashchenko ◽  
A.O. Mytsykov ◽  
...  

High performance rare-earth permanent magnets become crucial components of modern electron accelerators. PLP (pressless process) method was described as the advanced production step in the current rare-earth permanent magnet manufacturing. The radiation resistance of SmCo and Nd-Fe-B magnets under electron beam with 10 and 23 MeV and bremsstrahlung were studied. Dipole magnetic systems on the base of rare-earth permanent magnets were designed for the technological electron accelerators at NSC KIPT.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2224 ◽  
Author(s):  
Pierpaolo Dini ◽  
Sergio Saponara

This work addresses the problem of mitigating the effects of the cogging torque in permanent magnet synchronous motors, particularly brushless motors, which is a main issue in precision electric drive applications. In this work, a method for mitigating the effects of the cogging torque is proposed, based on the use of a nonlinear automatic control technique known as feedback linearization that is ideal for underactuated dynamic systems. The aim of this work is to present an alternative to classic solutions based on the physical modification of the electrical machine to try to suppress the natural interaction between the permanent magnets and the teeth of the stator slots. Such modifications of electric machines are often expensive because they require customized procedures, while the proposed method does not require any modification of the electric drive. With respect to other algorithmic-based solutions for cogging torque reduction, the proposed control technique is scalable to different motor parameters, deterministic, and robust, and hence easy to use and verify for safety-critical applications. As an application case example, the work reports the reduction of the oscillations for the angular position control of a permanent magnet synchronous motor vs. classic PI (proportional-integrative) cascaded control. Moreover, the proposed algorithm is suitable to be implemented in low-cost embedded control units.


Author(s):  
Antomne Caunes ◽  
Noureddine Takorabet ◽  
Sisuda Chaithongsuk ◽  
Laurent Duranton

Purpose The purpose of this paper is to present a synthesis of the analysis and modeling of the rotor losses in high speed permanent magnets motors. Design/methodology/approach Three types of losses are as a result of eddy currents in the conductive parts of the rotor. The analysis includes their characterization and the setup of a numerical model using finite element method. The adopted methodology is based on the separation of the losses which allows a better understanding of the physical phenomena. Each type of losses will be modeled and computed separately. Findings It is possible to make a precise estimate of the different losses in the rotor while keeping a relatively short computing time. Research limitations/implications The analysis is applied on a high-speed permanent magnet motor for avionic application. The model is validated with the commercial finite element model (FEM) software Flux2D. Originality/value The developed model allows an important save in terms of CPU-time compared to commercial FEM software while staying accurate. The separation of each losses and their sources is important for motor engineers and was requested for them to improve the designs more easily.


Author(s):  
Peter H. Connor ◽  
Antonino La Rocca ◽  
Zeyuan Xu ◽  
Michele Degano ◽  
Carol N. Eastwick ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 384 ◽  
Author(s):  
Hyunwoo Kim ◽  
Yeji Park ◽  
Huai-Cong Liu ◽  
Pil-Wan Han ◽  
Ju Lee

In order to improve the efficiency, a line-start synchronous reluctance motor (LS-SynRM) is studied as an alternative to an induction motor (IM). However, because of the saliency characteristic of SynRM, LS-SynRM have a limited power factor. Therefore, to improve the efficiency and power factor of electric motors, we propose a line-start permanent magnet assistance synchronous reluctance motor (LS-PMA-SynRM) with permanent magnets inserted into LS-SynRM. IM and LS-SynRM are selected as reference models, whose performances are analyzed and compared with that of LS-PMA-SynRM using a finite element analysis. The performance of LS-PMA-SynRM is analyzed considering the position and length of its permanent magnet, as well as its manufacture. The final model of LS-PMA-SynRM is designed for improving the efficiency and power factor of electric motors compared with LS-SynRM. To verify the finite element analysis (FEA) result, the final model is manufactured, experiments are conducted, and the performance of LS-PMA-SynRM is verified.


Sign in / Sign up

Export Citation Format

Share Document