scholarly journals The Effect of High-Intensity Electron Beam on the Crystal Structure, Phase Composition, and Properties of Al–Si Alloys with Different Silicon Content

2021 ◽  
Vol 22 (1) ◽  
pp. 129-157
Author(s):  
D. V. Zaguliaev ◽  
S. V. Konovalov ◽  
Yu. F. Ivanov ◽  
V. E. Gromov ◽  
V. V. Shlyarov ◽  
...  

The study deals with the element–phase composition, microstructure evolution, crystal-lattice parameter, and microdistortions as well as the size of the coherent scattering region in the Al–10.65Si–2.11Cu and Al–5.39Si–1.33Cu alloys irradiated with the high-intensity electron beam. As revealed by the methods of x-ray phase analysis, the principal phases in untreated alloys are the aluminium-based solid solution, silicon, intermetallics, and Fe2Al9Si2 phase. In addition, the Cu9Al4 phase is detected in Al–10.65Si–2.11Cu alloy. Processing alloys with the pulsed electron beam induces the transformation of lattice parameters of Al–10.65Si–2.11Cu (aluminium-based solid solution) and Al–5.39Si–1.33Cu (Al1 and Al2 phases). The reason for the crystal-lattice parameter change in the Al–10.65Si–2.11Cu and Al–5.39Si–1.33Cu alloys is suggested to be the changing concentration of alloying elements in the solid solution of these phases. As established, if a density of electron beam is of 30 and 50 J/cm2, the silicon and intermetallic compounds dissolve in the modified layer. The state-of-the-art methods of the physical materials science made possible to establish the formation of a layer with a nanocrystalline structure of the cell-type crystallization because of the material surface irradiation. The thickness of a modified layer depends on the parameters of the electron-beam treatment and reaches maximum of 90 µm at the energy density of 50 J/cm2. According to the transmission (TEM) and scanning (SEM) electron microscopy data, the silicon particles occupy the cell boundaries. Such changes in the structural and phase states of the materials response on their mechanical characteristics. To characterize the surface properties, the microhardness, wear parameter, and friction coefficient values are determined directly on the irradiated surface for all modification variants. As shown, the irradiation of the material surface with an intensive electron beam increases wear resistance and microhardness of the Al–10.65Si–2.11Cu and Al–5.39Si–1.33Cu alloys.

2015 ◽  
Vol 1085 ◽  
pp. 63-67
Author(s):  
Yurii F. Ivanov ◽  
Natalja Popova ◽  
Mark Kalashnikov ◽  
Victor Gromov ◽  
Evgeniy Budovskih ◽  
...  

Modification of a titanium surface layer with yttrium using the combined technique of electroexplosive doping and the subsequent irradiation by a high-intensity electron beam is carried out. The studies on the structure, the element and the phase composition, mechanical and tribological properties of the doped layer are carried out. Formation of a multiphase submicron-nanocrystalline eutectic is revealed. A multifold increase in the microhardness, a decrease in the friction coefficient and the wear rate of the modified layer is established.


2020 ◽  
Author(s):  
D. V. Zaguliaev ◽  
Yu. F. Ivanov ◽  
A. A. Leonov ◽  
D. F. Yakupov ◽  
Yu. A. Rubannikova ◽  
...  

Author(s):  
E. I. Marukovich ◽  
V. A. Kukareko ◽  
V. A. Kharkov ◽  
V. A. Kushnerov ◽  
I. O. Sazonenko

The effect of heat treatment on the structural-phase state and hardness of small-sized castings made from the Cu-Cr-Al copper alloy obtained by casting in a water-cooled metal mold is studied. Using X-ray diffraction analysis, it was found that the castings consist of a matrix solid solution based on copper. The increased value of the crystal lattice parameter of the copper phase is associated with aluminum atoms dissolved in it. After a low-temperature (450 °C) tempering for 10 hours, the crystal lattice parameter of the matrix solid solution decreases, which is associated with the formation of the Al8Cr5 intermetallic compound on the surface of the casting.It is established that after heat treatment (hardening and tempering), the hardness of castings from the Cu-Cr-Al alloy increases by 1.5 times.


2015 ◽  
Vol 233-234 ◽  
pp. 55-59
Author(s):  
Marina Kirman ◽  
Artem Talantsev ◽  
Roman Morgunov

The magnetization dynamics of metal-organic crystals has been studied in low frequency AC magnetic field. Four modes of domain wall motion (Debye relaxation, creep, slide and over - barrier motion (switching)) were distinguished in [MnII(H(R/S)-pn)(H2O)] [MnIII(CN)6]⋅2H2O crystals. Debye relaxation and creep of the domain walls are sensitive to Peierls relief configuration controlled by crystal lattice chirality. Structural defects and periodical Peierls potential compete in the damping of the domain walls. Driving factor of this competition is ratio of the domain wall width to the crystal lattice parameter.


2016 ◽  
Vol 877 ◽  
pp. 258-263
Author(s):  
Sergey Betsofen ◽  
Vladislav Antipov ◽  
Maxim Knyazev ◽  
Margarita Dolgova

A quantitative approach to the determination of the phase composition in the Al-Mg (Cu)-Li alloys has been developed on the basis of the balance equations of chemical and phase compositions as well as the lattice parameter measurement of the α solid solution. It is shown that, for the Al-Mg (Cu)-Li alloys, the ratio between the fractions of the δ' (Al3Li) and S1 (T1) phases is determined by the ratio between the molar fractions of Li and Mg (Cu). By means of this technique it is shown that in Al-Cu-Li alloys the proportion of δ'-phase is much higher than ternary T1-phase, and the proportion of δ'-phase and a ternary phase (S1) are approximately equal in alloys of Al-Mg-Li system. The equations for the calculation of the contents of the S1 (Al2MgLi), T1 (Al2CuLi) and δ' (Al3Li) phases in the 1420, 1424, 5090 alloys (Al-Mg-Li alloys) and in the 1440, 1441, 1450, 1460, 1461, 1464, 1469, 2050, 2090, 2091, 2094, 2098, 2099, 2195, 2198, 2199, 2297, 8090 (alloys (Al-Cu-Li alloys) are given.


Author(s):  
Михаил Владимирович Старицын ◽  
Михаил Леонидович Федосеев ◽  
Евгений Юрьевич Каптелов ◽  
Станислав Викторович Сенкевич ◽  
Игорь Петрович Пронин

В работе обсуждаются возможности тонкого варьирования состава субмикронных сегнетоэлектрических пленок твердых растворов цирконата-титаната свинца, соответствующих области морфотропной фазовой границы. Варьирование состава осуществлялось путем изменения расстояния от мишени до подложки в диапазоне 30 - 70 мм в установке высокочастотного магнетронного распыления керамической мишени при осаждении пленок на «холодную» подложку платинированного кремния. Это позволило изменять состав осаждаемых пленок (т.е., элементное соотношение атомов Zr и Ti) в диапазоне 0 -1,5% при сохранении однофазности сформированных перовскитовых пленок в процессе отжига при 580°C. При этом пленки характеризовались элементной неоднородностью состава по толщине, достигающей нескольких процентов. Толщина тонких слоев цирконата-титаната свинца составляла 500 нм. Исследовались изменения микроструктуры и параметров кристаллической решетки. Изменения состава пленок сопровождались существенными изменениями характера сферолитовой микроструктуры и ростовой текстуры. Был обнаружен резкий скачок квазикубического параметра кристаллической решетки, причиной которого может являться фазовая трансформация сегнетоэлектрической фазы - от ромбоэдрической модификации к двухфазному состоянию, предположительно состоящему из моноклинной и тетрагональной модификаций. The paper discusses the possibility of a fine variation in the composition of submicron ferroelectric films of lead zirconate titanate solid solutions corresponding to a morphotropic phase boundary. Composition was varied by changing the distance from the target to the substrate in the range of 30 - 70 mm in an installation for radio-frequency magnetron sputtering of a ceramic target, in which films deposition occurred on a «cold» platinized silicon substrate. This made it possible to change the composition of the deposited films (i.e., the elemental ratio of Zr and Ti atoms) in the range of 0 - 1,5% while maintaining the single-phase perovskite films annealed at 580 °С. In this case, the films were characterized by elemental inhomogeneity of the composition over the thickness, reaching several percents. The thickness of thin lead zirconate titanate layers was 500 nm. Changes in the microstructure and crystal lattice parameters were studied. The change in the composition of the films was accompanied by significant changes in the nature of the spherulite microstructure and growth texture. A sharp jump in the quasi-cubic crystal lattice parameter was discovered, which may be caused by the phase transformation of the ferroelectric phase - from the rhombohedral modification to the two-phase state, presumably consisting of monoclinic and tetragonal modifications.


2012 ◽  
Vol 55 (2) ◽  
pp. 57-59
Author(s):  
C. V. Gorbyunov ◽  
C. V. Vorob’ev ◽  
Yu. F. Ivanov ◽  
Yu. A. Kolubaeva ◽  
A. D. Terecov

Author(s):  
E. N. Sheftel ◽  
V. A. Tedzhetov ◽  
Ph. V. Kiryukhantsev-Korneev ◽  
E. V. Harin ◽  
G. Sh. Usmanova ◽  
...  

The main trends of modern developing magnetic microelectronics are miniaturization and speed, while ensuring efficient operation in the MHz and GHz frequency ranges of magnetic fields. Developing new magnetic materials featured by properties that ensure the implementation of these trends is the key fundamental and applied problem of materials science. In this regard, Fe-Me-X nanocrystalline soft magnetic alloys (Me is one of the metals from Group IVb of the Periodic Table, X is one of the N, C, O, B light elements) obtained in the form of films are of interest. As shown earlier by the authors of this article on Fe-Zr-N films, such films featuring by the Fe/MeX two-phase structure can provide a combination of high saturation induction (Bs), low coercive force (Hc), high hardness, and thermal stability of the structure. The films were produced by magnetron sputtering. The data obtained and published by the authors on the Fe–Ti–B films earlier indicate great prospects for their application in modern microelectronics. There are no any other published results of FeTiB film studies in the context of microelectronics applications. In this paper, we continue the studies of FeTiB films started earlier to identify the chemical and phase composition providing the level of properties required for film application in microelectronics. Nanocrystalline films containing 0 to 14.3 at.% Ti and 0 to 28.9 at.% B were obtained by DC magnetron sputtering. The phase-structural state of the films was studied by X-ray diffraction and transmission electron microscopy. All films are divided into 3 groups according to phase composition: single-phase (supersaturated solid solution of Ti in α-Fe), two-phase (α-Fe(Ti)/α-Ti, α-Fe(Ti)/TiB2, α-Fe (Ti)/FeTi, α-Fe(Ti)/Fe2B) and XRD amorphous. It is shown that XRD amorphous films feature by a mixed structure represented by a solid solution of α-Fe(Ti) with a grain size between 0.7 and 2 nm and an amorphous phase. A reasonable assumption is made on the amorphous phase enrichment by boron. A quantitative assessment of the α-Fe(Ti) phase grain size and its dependence on the chemical and phase composition of the films is given. The mechanisms of solid solution and dispersion hardening determine the grain size of this phase.


Sign in / Sign up

Export Citation Format

Share Document