scholarly journals Calculation of the Ground-State Ionization Energy for Shallow Donors in n-Ge Single Crystals within the ∆1-Model for the Conduction Band

2015 ◽  
Vol 60 (10) ◽  
pp. 1022-1026 ◽  
Author(s):  
S.V. Luniov ◽  
◽  
O.V. Burban ◽  
P.F. Nazarchuk
1994 ◽  
Vol 01 (04) ◽  
pp. 649-653 ◽  
Author(s):  
A.J. PATCHETT ◽  
S.S. DHESI ◽  
R.I.R. BLYTH ◽  
S.D. BARRETT

An intense photoemission feature is observed at a binding energy of ~10 eV in the UV photoemission spectra from the (0001) surfaces of bulk single crystals of rare-earth metals. This emission cannot be explained in terms of ground state electronic structure and we have been unable to attribute its existence to the presence of contamination of the surface. We present some evidence that may indicate its origin lies in the creation, by the photoemission process, of a metastable two-hole final state.


2019 ◽  
Author(s):  
Ελένη Αζά

The discovery of materials with coexisting magnetic and ferroelectric orders, has revived theinterest of condensed matter physics and materials’ science communities maintaining the greatpromise of such fundamental mechanisms in devising applications ranging from portablemagnetoelectric (ME) sensors and memories to radar technologies. The present PhD thesis is a study in the field of strongly correlated systems where coupled properties arise from the interplay of charge and spin degrees of freedom over lattice topologies enabling competing magnetic interactions and therefore emergence of coupling of electric and magnetic order. Non-perovskite, two-dimensional (2D) Na-Mn-O oxides are revisited in scope of this in both polycrystalline and large single crystal forms. Among Na-deficient polymorphs, hexagonal α-Na0.7MnO2 (single crystals) has been investigated for the first time as a playground of competing interactions due to mixed Mnvalence (Mn4+ / Mn3+), fostered by Na vacancies in the structure. The competition of FM (Mn3+-Mn4+) and AFM (Mn3+ -Mn3+) interactions is believed to be the origin of the magnetic instability leading to a glassy ground state leaving also their footprint in the dielectric permittivity measurements. Competing FM and AFΜ interactions are also investigated as the origin of the anisotropic magnetic properties witnessed in a-NaxMnO2 (x= 0.96) single crystals. Neutron single crystal experiments show a well-established AFM long range order which vanishes above 26 K whilea coexistent canted antiferromagnetic state persists up to 45 K. In both alpha powders and aNa0.96MnO2 single crystals, the dielectric permittivity suggests the onset of the commensuratemagnetic long range order (T~ 45 K) which in the case of the powders allows a magnetocapacitance effect. Compositional modulations in β-NaMnO2, which are depicted as an intergrowth of α- and βlike oxygen coordinations, are found to trigger a proper-screw magnetic ground state which evolves into collinear commensurate AFM state. Features in the dielectric permittivity coincide with the onset of the commensurate AFM order giving away also the contribution of the α- structural domains. Further understanding of the mechanisms that dictate the relief of frustrated interactions and establishment of magnetic order together with the role of structural complexity in the form of domains or domain-walls is a direction that warrants further exploration as it will help us to resolve whether other coupled electron degrees of freedom are likely to be generated in this family of oxides.


2007 ◽  
Vol 90 (13) ◽  
pp. 131905 ◽  
Author(s):  
R. Kudrawiec ◽  
S. R. Bank ◽  
H. B. Yuen ◽  
H. Bae ◽  
M. A. Wistey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document