Exploring Baryon Rich Matter with Heavy-Ion Collisions

2019 ◽  
Vol 64 (7) ◽  
pp. 583 ◽  
Author(s):  
S. Harabasz

Collisions of heavy nuclei at (ultra-)relativistic energies provide a fascinating opportunity to re-create various forms of matter in the laboratory. For a short extent of time (10-22 s), matter under extreme conditions of temperature and density can exist. In dedicated experiments, one explores the microscopic structure of strongly interacting matter and its phase diagram. In heavy-ion reactions at SIS18 collision energies, matter is substantially compressed (2–3 times ground-state density), while moderate temperatures are reached (T < 70 MeV). The conditions closely resemble those that prevail, e.g., in neutron star mergers. Matter under such conditions is currently being studied at the High Acceptance DiElecton Spectrometer (HADES). Important topics of the research program are the mechanisms of strangeness production, the emissivity of matter, and the role of baryonic resonances herein. In this contribution, we will focus on the important experimental results obtained by HADES in Au+Au collisions at 2.4 GeV center-of-mass energy. We will also present perspectives for future experiments with HADES and CBM at SIS100, where higher beam energies and intensities will allow for the studies of the first-order deconfinement phase transition and its critical endpoint.

2007 ◽  
Vol 16 (07n08) ◽  
pp. 1917-1922
Author(s):  
D. KROFCHECK ◽  
R. MAK ◽  
P. ALLFREY

At the Relativistic Heavy Ion Collider (RHIC) elliptic flow signals (v2) appear to be stronger than those measured at lower center-of-mass energies. With the beginning of heavy ion beams at the Large Hadron Collider (LHC) it is important to have a reliable tool for simulating v2 at the LHC Pb – Pb center-of-mass energy of 5.5 A TeV. In this work we used the heavy ion simulation tool HYDJET to study elliptic flow at the event generator level. The generator level elliptic flow v2 for Pb – Pb collisions was two-particle and four-particle cumulants.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 122 ◽  
Author(s):  
Keming Shen ◽  
Gergely Gábor Barnaföldi ◽  
Tamás Sándor Biró

We investigate how the non-extensive approach works in high-energy physics. Transverse momentum ( p T ) spectra of several hadrons are fitted by various non-extensive momentum distributions and by the Boltzmann–Gibbs statistics. It is shown that some non-extensive distributions can be transferred one into another. We find explicit hadron mass and center-of-mass energy scaling both in the temperature and in the non-extensive parameter, q, in proton–proton and heavy-ion collisions. We find that the temperature depends linearly, but the Tsallis q follows a logarithmic dependence on the collision energy in proton–proton collisions. In the nucleus–nucleus collisions, on the other hand, T and q correlate linearly, as was predicted in our previous work.


2011 ◽  
Vol 20 (07) ◽  
pp. 1545-1550
Author(s):  
◽  
MARTIN SPOUSTA

We present the measurement of jet production performed with the ATLAS detector in proton-proton collisions at center-of-mass energy of 7 TeV, using an integrated luminosity of 17 nb−1. We show the inclusive jet cross sections and jet shapes. The expected performance and strategy for the jet reconstruction in heavy ion collisions is also discussed.


2018 ◽  
Vol 171 ◽  
pp. 17002
Author(s):  
Redmer Alexander Bertens

Anisotropic flow is sensitive to the shear (η/s) and bulk (ζ/s) viscosity of the quark-gluon plasma created in heavy-ion collisions, as well as the initial state of such collisions and hadronization mechanisms. In these proceedings, elliptic (υ2) and higher harmonic (υ3, υ4) flow coefficients of π±, K±, p(p) and the ϕ-meson, are presented for Pb—Pb collisions at the highest-ever center-of-mass energy of [see formula in PDF] = 5.02 TeV. Comparisons to hydrodynamic calculations (IP-Glasma, MUSIC, UrQMD) are shown to constrain the initial conditions and viscosity of the medium.


2002 ◽  
Vol 20 (3) ◽  
pp. 493-495 ◽  
Author(s):  
H. BRÄUNING ◽  
A. DIEHL ◽  
K.v. DIEMAR ◽  
A. THEIß ◽  
R. TRASSL ◽  
...  

In heavy ion fusion, the compression of the DT pellet requires high intensity beams of ions in the gigaelectron volt energy range. Charge-changing collisions due to intrabeam scattering can have a high impact on the design of adequate accelerator and storage rings. Not only do intensity losses have to be taken into account, but also the deposition of energy on the beam lines after bending magnets, for example, may be nonnegligible. The center-of-mass energy for these intrabeam collisions is typically in the kiloelectron volt range for beam energies in the order of several gigaelectron volts. In this article, we present experimental cross sections for charge transfer and ionization in homonuclear collisions of Ar4+, Kr4+, and Xe4+, and for charge transfer only in homonuclear collisions of Pb4+ and Bi4+. Using a hypothetical 100-Tm synchrotron as an example, expected particle losses are calculated based on the experimental data. The results are compared with expectations for singly charged Bi+ ions, which are usually considered for heavy ion fusion.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012140
Author(s):  
D A Ivanishchev ◽  
D O Kotov ◽  
E L Kryshen ◽  
M V Malaev ◽  
V G Riabov ◽  
...  

Abstract The short-lived hadronic resonances are used to study properties of the hot and dense medium produced in relativistic heavy-ion collisions. Due to their short lifetimes, the resonance yields and masses measured in the hadronic channels are sensitive to rescattering and regeneration effects in the hadronic phase. The measurement of resonances is foreseen in the physical program of the MPD experiment at NICA in heavy-ion collisions at S N N = 4 - 11 GeV , in the range of energies where extensive measurements of resonances are not experimentally available. In this contribution, we explore the sensitivity of the ρ(770)0, K*(892), ϕ(1020), ∑(1385)±, Λ(1520) and Ξ(1530)0 resonances measured in the hadronic decay channels to different stages of the heavy-ion collisions at NICA energies and report the feasibility studies for the reconstruction of resonances in the MPD setup


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1887
Author(s):  
Theodoros Gaitanos

In this article we review the important role of non-equilibrium dynamics in reactions induced by ions and hadron beams to understand the fragmentation processes inside hadronic media. We discuss the single-particle dynamics in specific sources such as spectators in heavy-ion collisions and residual nuclear targets in hadron-induced reactions. Particular attention is given to the dynamics of hyperons. We further discuss the question regarding the onset of local instabilities, which are relevant for the appearance of fragmentation phenomena in nuclear reactions. We apply the theoretical formalism, that is, semi-classical transport embedded with statistical methods of nuclear fragmentation, to reactions induced by light ions and hadron beams. We discuss the results of nuclear fragmentation and, in particular, examine the formation of hypernuclei. Such studies are important for obtaining a deeper understanding of the equation of state in fragmenting matter and are relevant for forthcoming experiments, such as PANDA at FAIR and J-PARC in Japan.


2012 ◽  
Vol 57 (8) ◽  
pp. 796
Author(s):  
N.K. Dhiman

We consider the cluster decay of 56Ni* formed in heavy-ion collisions, by using different parameters proposed by different authors for the Fermi density distribution and the nuclear radius. Our study reveals that different technical parameters do not alter significantly the structure of fractional yields. The cluster decay half-lives of different clusters lie within ±10% for different Fermi density parameters and nuclear radii and, therefore, justify the current set of parameters used in the literature for the calculation of cluster decays.


Sign in / Sign up

Export Citation Format

Share Document