Classification of Tuberculosis and Pneumonia in Human Lung Based on Chest X-Ray Image using Convolutional Neural Network

Author(s):  
Muhaza Liebenlito ◽  
Yanne Irene ◽  
Abdul Hamid

AbstractIn this paper, we use chest x-ray images of Tuberculosis and Pneumonia to diagnose the patient using a convolutional neural network model. We use 4273 images of pneumonia, 1989 images of normal, and 394 images of tuberculosis. The data are divided into 80% as the training set and 20% as the testing set. We do the preprocessing steps to all of our images data, such as resize, converting RGB to grayscale, and Gaussian normalization. On the training dataset, the sampling technique used is undersampling and oversampling to balance each class. The best model was chosen based on the Area under Curve value i.e. the area under the curve of Receiver Operating Characteristics. This method shows that the best model obtains when trains the training dataset using oversampling. The Area under Curve value is 0.99 for tuberculosis and 0.98 for pneumonia. Therefore, this best model succeeds to identify 86% true for tuberculosis and 96% true for pneumonia.Keywords: chest X-ray images; tuberculosis; pneumonia; convolutional neural network.                                                                AbstrakPada penelitian ini memanfaatkan data citra chest x-ray penderita penyakit tuberculosis dan pneumonia. Model convolutional neural network digunakan untuk membantu mendiagnosis kedua penyakit ini. Data yang digunakan masing-masing sudah dilabeli sebanyak 4273 citra pneumonia, 1989 citra normal dan 394 citra tuberculosis. Data tersebut dibagi menjadi 80% himpunan data latih dan 20% data uji. Himpunan data tersebut telah melalui 3 tahap prepocessing yaitu resize citra, merubah citra RGB menjadi grayscale dan standarisasi gausian pada citra. Pada data latih dilakukan teknik sampling berupa undersampling dan oversampling data untuk menyeimbangkan data latih antar kelas. Model terbaik dipilih berdasarkan nilai Area under Curve yaitu luas daerah di bawah kurva Receiver Operating Chracteristics. Hasil menunjukkan bahwa model terbaik dihasilkan ketika dilatih menggunakan data latih hasil oversampling dengan nilai Area under Curve kelas tuberculosis sebesar 0,99 dan nilai Area under Curve kelas pneumonia sebesar 0,98. Oleh karena itu, model terbaik ini mampu mengindentifikasi sebanyak 86% penyakit tuberculosis dan 96% penyakit pneumonia.Kata Kunci: citra chest X-ray; penyakit infeksi paru; pengolahan citra digital Convolutional Neural Network.


2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.



2021 ◽  
Author(s):  
Muhammad Talha Nafees ◽  
Irshad ullah ◽  
Muhammad Rizwan ◽  
Maaz ullah ◽  
Muhammad Irfanullah Khan ◽  
...  

The early and rapid diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), the main cause of fatal pandemic coronavirus disease 2019 (COVID-19), with the analysis of patients chest X-ray (CXR) images has lifesaving importance for both patients and medical professionals. In this research a very simple novel and robust deep-learning convolutional neural network (CNN) model with less number of trainable-parameters is proposed to assist the radiologists and physicians in the early detection of COVID-19 patients. It also helps to classify patients into COVID-19, pneumonia and normal on the bases of analysis of augmented X-ray images. This augmented dataset contains 4803 COVID-19 from 686 publicly available chest X-ray images along with 5000 normal and 5000 pneumonia samples. These images are divided into 80% training and 20 % validation. The proposed CNN model is trained on training dataset and then tested on validation dataset. This model has a promising performance with a mean accuracy of 92.29%, precision of 99.96%, Specificity of 99.85% along with Sensitivity value of 85.92%. The result can further be improved if more data of expert radiologist is publically available.



2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.







2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Isabella Castiglioni ◽  
Davide Ippolito ◽  
Matteo Interlenghi ◽  
Caterina Beatrice Monti ◽  
Christian Salvatore ◽  
...  

Abstract Background We aimed to train and test a deep learning classifier to support the diagnosis of coronavirus disease 2019 (COVID-19) using chest x-ray (CXR) on a cohort of subjects from two hospitals in Lombardy, Italy. Methods We used for training and validation an ensemble of ten convolutional neural networks (CNNs) with mainly bedside CXRs of 250 COVID-19 and 250 non-COVID-19 subjects from two hospitals (Centres 1 and 2). We then tested such system on bedside CXRs of an independent group of 110 patients (74 COVID-19, 36 non-COVID-19) from one of the two hospitals. A retrospective reading was performed by two radiologists in the absence of any clinical information, with the aim to differentiate COVID-19 from non-COVID-19 patients. Real-time polymerase chain reaction served as the reference standard. Results At 10-fold cross-validation, our deep learning model classified COVID-19 and non-COVID-19 patients with 0.78 sensitivity (95% confidence interval [CI] 0.74–0.81), 0.82 specificity (95% CI 0.78–0.85), and 0.89 area under the curve (AUC) (95% CI 0.86–0.91). For the independent dataset, deep learning showed 0.80 sensitivity (95% CI 0.72–0.86) (59/74), 0.81 specificity (29/36) (95% CI 0.73–0.87), and 0.81 AUC (95% CI 0.73–0.87). Radiologists’ reading obtained 0.63 sensitivity (95% CI 0.52–0.74) and 0.78 specificity (95% CI 0.61–0.90) in Centre 1 and 0.64 sensitivity (95% CI 0.52–0.74) and 0.86 specificity (95% CI 0.71–0.95) in Centre 2. Conclusions This preliminary experience based on ten CNNs trained on a limited training dataset shows an interesting potential of deep learning for COVID-19 diagnosis. Such tool is in training with new CXRs to further increase its performance.





Sign in / Sign up

Export Citation Format

Share Document