Automated detection of pneumonia cases using deep transfer learning with paediatric chest X-ray images

2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


2020 ◽  
Author(s):  
Elilson Santos ◽  
Lúcio Flavio De Jesus Silva ◽  
Omar Andres Carmona Cortes

COVID-19 is an exceptionally infectious disease caused by severe acute respiratory syndrome. The illness has spread itself worldwide rapidly and can lead to death only in a few days. In this context, investigating fast ways of detection that help physicians in the decision-making process is essential to help in the task of saving lives. This work investigates fourteen convolutional neural network architectures using transfer learning. We used a database composed of 2,928 x-ray images divided into three classes: Normal, COVID-19, and Viral Pneumonia. Results showed that DenseNet169 presented the best results regarding classification reaching a mean accuracy of 94%, a precision of 97.6%, a recall of 95.6%, and an F1-score of 96,1%, approximately.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012001
Author(s):  
J Ureta ◽  
A Shrestha

Abstract Tuberculosis(TB) is one of the top 10 causes of death worldwide, and drug-resistant TB is a major public health concern especially in resource-constrained countries. In such countries, molecular diagnosis of drug-resistant TB remains a challenge; and imaging tools such as X-rays, which are cheaply and widely available, can be a valuable supplemental resource for early detection and screening. This study uses a specialized convolutional neural network to perform binary classification of chest X-ray images to classify drug-resistant and drug-sensitive TB. The models were trained and validated using the TBPortals dataset which contains 2,973 labeled X-ray images from TB patients. The classifiers were able to identify the presence or absence of drug-resistant Tuberculosis with an AUROC between 0.66–0.67, which is an improvement over previous attempts using deep learning networks.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2020 ◽  
Vol 10 (9) ◽  
pp. 3233 ◽  
Author(s):  
Tawsifur Rahman ◽  
Muhammad E. H. Chowdhury ◽  
Amith Khandakar ◽  
Khandaker R. Islam ◽  
Khandaker F. Islam ◽  
...  

Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon at the right time and thus the early diagnosis of pneumonia is vital. The paper aims to automatically detect bacterial and viral pneumonia using digital x-ray images. It provides a detailed report on advances in accurate detection of pneumonia and then presents the methodology adopted by the authors. Four different pre-trained deep Convolutional Neural Network (CNN): AlexNet, ResNet18, DenseNet201, and SqueezeNet were used for transfer learning. A total of 5247 chest X-ray images consisting of bacterial, viral, and normal chest x-rays images were preprocessed and trained for the transfer learning-based classification task. In this study, the authors have reported three schemes of classifications: normal vs. pneumonia, bacterial vs. viral pneumonia, and normal, bacterial, and viral pneumonia. The classification accuracy of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial, and viral pneumonia were 98%, 95%, and 93.3%, respectively. This is the highest accuracy, in any scheme, of the accuracies reported in the literature. Therefore, the proposed study can be useful in more quickly diagnosing pneumonia by the radiologist and can help in the fast airport screening of pneumonia patients.


2018 ◽  
Vol 135 ◽  
pp. 400-407 ◽  
Author(s):  
Bens Pardamean ◽  
Tjeng Wawan Cenggoro ◽  
Reza Rahutomo ◽  
Arif Budiarto ◽  
Ettikan Kandasamy Karuppiah

Author(s):  
Muhaza Liebenlito ◽  
Yanne Irene ◽  
Abdul Hamid

AbstractIn this paper, we use chest x-ray images of Tuberculosis and Pneumonia to diagnose the patient using a convolutional neural network model. We use 4273 images of pneumonia, 1989 images of normal, and 394 images of tuberculosis. The data are divided into 80% as the training set and 20% as the testing set. We do the preprocessing steps to all of our images data, such as resize, converting RGB to grayscale, and Gaussian normalization. On the training dataset, the sampling technique used is undersampling and oversampling to balance each class. The best model was chosen based on the Area under Curve value i.e. the area under the curve of Receiver Operating Characteristics. This method shows that the best model obtains when trains the training dataset using oversampling. The Area under Curve value is 0.99 for tuberculosis and 0.98 for pneumonia. Therefore, this best model succeeds to identify 86% true for tuberculosis and 96% true for pneumonia.Keywords: chest X-ray images; tuberculosis; pneumonia; convolutional neural network.                                                                AbstrakPada penelitian ini memanfaatkan data citra chest x-ray penderita penyakit tuberculosis dan pneumonia. Model convolutional neural network digunakan untuk membantu mendiagnosis kedua penyakit ini. Data yang digunakan masing-masing sudah dilabeli sebanyak 4273 citra pneumonia, 1989 citra normal dan 394 citra tuberculosis. Data tersebut dibagi menjadi 80% himpunan data latih dan 20% data uji. Himpunan data tersebut telah melalui 3 tahap prepocessing yaitu resize citra, merubah citra RGB menjadi grayscale dan standarisasi gausian pada citra. Pada data latih dilakukan teknik sampling berupa undersampling dan oversampling data untuk menyeimbangkan data latih antar kelas. Model terbaik dipilih berdasarkan nilai Area under Curve yaitu luas daerah di bawah kurva Receiver Operating Chracteristics. Hasil menunjukkan bahwa model terbaik dihasilkan ketika dilatih menggunakan data latih hasil oversampling dengan nilai Area under Curve kelas tuberculosis sebesar 0,99 dan nilai Area under Curve kelas pneumonia sebesar 0,98. Oleh karena itu, model terbaik ini mampu mengindentifikasi sebanyak 86% penyakit tuberculosis dan 96% penyakit pneumonia.Kata Kunci: citra chest X-ray; penyakit infeksi paru; pengolahan citra digital Convolutional Neural Network.


Sign in / Sign up

Export Citation Format

Share Document