Insulation Performance of Safety-Related Electrical Penetrations for Pressurized Water Reactors under Simulated Severe Accident Conditions

2021 ◽  
Vol 141 (10) ◽  
pp. 552-559
Author(s):  
Aiki Watanabe ◽  
Masaaki Ikeda ◽  
Takefumi Minakawa ◽  
Naoshi Hirai ◽  
Yoshimichi Ohki
Author(s):  
I. K. Madni ◽  
M. Khatib-Rahbar

This paper focuses on modeling and phenomenological issues relevant to analysis of severe accidents in integral Pressurized Water Reactors (iPWRs). It identifies relevant thermal-hydraulics, melt progression and fission product release and transport phenomena, and discusses the applicability of the MELCOR computer code to modeling of severe accidents in iPWRs. Areas where the current MELCOR severe accident modeling framework has limitations in the representation of phenomenological processes are identified and examples of possible modeling remedies are discussed. The paper identifies modeling and phenomenological issues that contribute to differences in the calculated reactor coolant system and containment response for iPWRs as compared to traditional PWRs under severe accident conditions.


Author(s):  
Zhixiong Tan ◽  
Jiejin Cai

After Fukushima Daiichi Nuclear Power Plant accident, alternative fuel-design to enhance tolerance for severe accident conditions becomes particularly important. Silicon carbide (SiC) cladding fuel assembly gain more safety margin as novel accident tolerant fuel. This paper focuses on the neutron properties of SiC cladding fuel assembly in pressurized water reactors. Annular fuel pellet was adopted in this paper. Two types of silicon carbide assemblies were evaluated via using lattice calculation code “dragon”. Type one was consisted of 0.057cm SiC cladding and conventional fuel. Type two was consisted of 0.089cm SiC cladding and BeO/UO2 fuel. Compared the results of SiC cladding fuel assembly neutronic parameters with conventional Zircaloy cladding fuel assembly, this paper analyzed the safety of neutronic parameters performance. Results demonstrate that assembly-level reactivity coefficient is kept negative, meanwhile, the numerical value got a relatively decrease. Other parameters are conformed to the design-limiting requirement. SiC kinds cladding show more flat power distribution. SiC cases also show the ability of reducing the enrichment of fuel pellets even though it has higher xenon concentration. These types of assembly have broadly agreement neutron performance with the conventional cladding fuel, which confirmed the acceptability of SiC cladding in the way of neutron physics analysis.


1984 ◽  
Vol 82 (1) ◽  
pp. 77-87 ◽  
Author(s):  
R. Krieg ◽  
F. Eberle ◽  
B. Göller ◽  
W. Gulden ◽  
J. Kadlec ◽  
...  

Author(s):  
Andrea Bachrata ◽  
Fréderic Bertrand ◽  
Nathalie Marie ◽  
Fréderic Serre

Abstract The nuclear safety approach has to cover accident sequences involving core degradation in order to develop reliable mitigation strategies for both existing and future reactors. In particular, the long-term stabilization of the degraded core materials and their coolability has to be ensured after a severe accident. This paper focuses on severe accident phenomena in pressurized water reactors (PWR) compared to those potentially occurring in future GenIV-type sodium fast reactors (SFR). First, the two considered reactor concepts are introduced by focusing on safety aspects. The severe accident scenarios leading to core melting are presented and the initiating events are highlighted. This paper focuses on in-vessel severe accident phenomena, including the chronology of core damage, major changes in the core configuration and molten core progression. Regarding the mitigation means, the in-vessel retention phenomena and the core catcher characteristics are reviewed for these different nuclear generation concepts (II, III, and IV). A comparison between the PWR and SFR severe accident evolution is provided as well as the relation between governing physical parameters and the adopted mitigation provisions for each reactor concept. Finally, it is highlighted how the robustness of the safety demonstration is established by means of a combined probabilistic and deterministic approach.


2010 ◽  
Author(s):  
Randall O. Gauntt ◽  
Andrew S. Goldmann ◽  
Kenneth C. Wagner ◽  
Dana Auburn Powers ◽  
Scott G. Ashbaugh ◽  
...  

2019 ◽  
Vol 137 ◽  
pp. 01016 ◽  
Author(s):  
Rafał Bryk ◽  
Lars Dennhardt ◽  
Simon Schollenberger

PKL is the only test facility in Europe that replicates the entire primary side and the most important parts of the secondary side of western-type Pressurized Water Reactors (PWR) in the scale of 1:1 in heights. It is also worldwide the only test facility with 4 identical reactor coolant loops arranged symmetrically around the Reactor Pressure Vessel (RPV) for simulation of nonsymmetrical boundary conditions between the reactor loops. Thermal-hydraulic phenomena observed in PWRs are simulated in the PKL test facility for over 40 years. The analyses carried out in these years encompass a large spectrum of accident scenario simulations and corresponding cool-down procedures. The overall goal of the PKL experiments is to show that under accident conditions - even for extreme and highly unlikely assumptions as additional loss of safety systems - the core cooling can be maintained or re-established by automatic or operator- performed procedures and that a severe accident e.g. a core melt-down can be avoided under all circumstances. Another goal of the tests performed in the PKL facility is the provision of data for validation of thermal-hydraulic system codes. This paper presents recent modifications of the PKL facility, applied in order to adapt the facility to the latest western-type designs currently built in the world. The paper discusses also important results obtained in the last years.


Author(s):  
Jonathan C. Birchley ◽  
Bernd Jaeckel ◽  
Timothy J. Haste ◽  
Martin Steinbrueck ◽  
Juri Stuckert

The QUENCH experimental programme at Forschungszentrum Karlsruhe (FZK) investigates phenomena associated with reflood of a degrading core under postulated severe accident conditions, but where the geometry is still mainly rod-like and degradation is still at an early phase. The QUENCH test bundle is electrically heated and consists of 21 fuel rod simulators with a total length of approximately 2.5 m. The cladding and grid spacers are identical to those used in Pressurized Water Reactors (PWR) whereas the fuel is represented by ZrO2 pellets. Experiment QUENCH-14 was successfully performed at FZK in July 2008 and is the first in this programme where Zr-Nb alloy M5® is used as the fuel rod simulator cladding. QUENCH-14 was otherwise essentially the same as experiment QUENCH-06, which was the subject of the CSNI ISP-45 exercise. It is also the first of three experiments in the QUENCH-ACM series, recently launched to examine the effect of advanced cladding materials on oxidation and quenching under otherwise similar conditions. Pre- and post-test analyses were performed at PSI using a local version of SCDAP/RELAP5 and MELCOR 1.8.6, using input models which had already been benchmarked against QUENCH-06 data. Preliminary pre-test calculations with both codes and alternative correlations for the oxidation kinetics indicated that the planned test protocol would achieve the desired objective of exhibiting whatever effects might arise from the change in cladding-material in the course of a transient similar to QUENCH-06. Several correlations were implemented in the models, namely Cathcart-Pawel, Urbanic-Heidrick, Leistikow-Schanz and Prater-Courtright for Zircaloy-4 (Zry-4), and additionally a new candidate correlation for M5® based on recent separate-effects tests performed at FZK on M5® cladding samples. Analyses of the QUENCH-14 data demonstrate strengths and limitations of the various models. Some tentative recommendations are made concerning choice of correlation and effect of cladding material.


Sign in / Sign up

Export Citation Format

Share Document