Improved Reconfiguration Algorithm by using an Initial Operating Point in Distribution Power System

2009 ◽  
Vol 129 (2) ◽  
pp. 257-264
Author(s):  
Gyu-Seok Seo ◽  
Young-Sik Baek
Keyword(s):  
2017 ◽  
Vol 7 (3) ◽  
pp. 1588-1594
Author(s):  
Μ. Μ. Alomari ◽  
M. S. Widyan ◽  
M. Abdul-Niby ◽  
A. Gheitasi

The use of a unified power flow controller (UPFC) to control the bifurcations of a subsynchronous resonance (SSR) in a multi-machine power system is introduced in this study. UPFC is one of the flexible AC transmission systems (FACTS) where a voltage source converter (VSC) is used based on gate-turn-off (GTO) thyristor valve technology. Furthermore, UPFC can be used as a stabilizer by means of a power system stabilizer (PSS). The considered system is a modified version of the second system of the IEEE second benchmark model of subsynchronous resonance where the UPFC is added to its transmission line. The dynamic effects of the machine components on SSR are considered. Time domain simulations based on the complete nonlinear dynamical mathematical model are used for numerical simulations. The results in case of including UPFC are compared to the case where the transmission line is conventionally compensated (without UPFC) where two Hopf bifurcations are predicted with unstable operating point at wide range of compensation levels. For UPFC systems, it is worth to mention that the operating point of the system never loses stability at all realistic compensation degrees and therefore all power system bifurcations have been eliminated.


1987 ◽  
Vol 107 (3) ◽  
pp. 56-66
Author(s):  
Akihiko Yokoyama ◽  
Takafumi Mayeda ◽  
Yasuji Sekine

Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 135 ◽  
Author(s):  
Jun Deng ◽  
Jun Suo ◽  
Jing Yang ◽  
Shutao Peng ◽  
Fangde Chi ◽  
...  

Random variation of grid-connected wind power can cause stochastic variation of the power system operating point. This paper proposes a new scheme to design an adaptive damping controller by tracking the variation of system operating points and updating the controller’s functions to achieve a robust damping control effect. Firstly, the operating space is classified into different modes according to the classification of wind power outputs. Multiple power system stabilizers (PSSs) are then designed. Secondly, the method of optimal classification and regression decision tree (CART) is utilized for classifying subspaces of system operating point and it is proposed that the on-line measurements from wide area measurement system (WAMS) are used for tracking the dynamic behaviors of stochastic drifting point and thus guide the updating of appropriate PSSs be switched on adaptively. A 16-generator-68-bus power system integrated with wind power is presented as a test system to demonstrate that the adaptive control scheme by use of the CART can damp multi-mode oscillations effectively when the wind power output changes.


2019 ◽  
Vol 9 (11) ◽  
pp. 2234 ◽  
Author(s):  
Jaehyeong Lee ◽  
Minhan Yoon ◽  
Sungchul Hwang ◽  
Soseul Jeong ◽  
Seungmin Jung ◽  
...  

Recently, there have been many cases in which direct current (DC) facilities have been placed in alternating current (AC) systems for various reasons. In particular, in Korea, studies are being conducted to install a back-to-back (BTB) voltage-sourced converter (VSC) high-voltage direct current (HVDC) to solve the fault current problem of the meshed system, and discussions on how to operate it have been made accordingly. It is possible to provide grid services such as minimizing grid loss by changing the HVDC operating point, but it also may violate reliability standards without proper HVDC operation according to the system condition. Especially, unlike the AC system, DC may adversely affect the AC system because the operating point does not change even after a disturbance has occurred, so strategies to change the operating point after the contingency are required. In this paper, a method for finding the operating point of embedded HVDC that minimizes losses within the range of compliance with the reliability criterion is proposed. We use the Power Transfer Distribution Factor (PTDF) to reduce the number of buses to be monitored during HVDC control, reduce unnecessary checks, and determine the setpoints for the active/reactive power of the HVDC through system total loss minimization (STLM) control to search for the minimum loss point using Powell’s direct set. We also propose an algorithm to search for the operating point that minimizes the loss automatically and solves the overload occurring in an emergency through security-constrained loss minimization (SCLM) control. To verify the feasibility of the algorithm, we conducted a case study using an actual Korean power system and verified the effect of systematic loss reduction and overload relief in a contingency. The simulations are conducted by a commercial power system analysis tool, Power System Simulator for Engineering (PSS/E).


Sign in / Sign up

Export Citation Format

Share Document