A Voltage Control Method of Static Var Compensator for the Remote System Interconnected by Long Distance AC Cables

2011 ◽  
Vol 131 (11) ◽  
pp. 896-904
Author(s):  
Yuji Tamura ◽  
Shinji Takasaki ◽  
Yasuyuki Miyazaki ◽  
Hideo Takeda ◽  
Shoichi Irokawa ◽  
...  
2013 ◽  
Vol 186 (3) ◽  
pp. 19-30
Author(s):  
Yuji Tamura ◽  
Shinji Takasaki ◽  
Yasuyuki Miyazaki ◽  
Hideo Takeda ◽  
Shoichi Irokawa ◽  
...  

2016 ◽  
Vol 839 ◽  
pp. 54-58 ◽  
Author(s):  
Piyadanai Pachanapan ◽  
Phudit Inthai

A micro static var compensator (µSVC) is introduced in this work to prevent the over-voltage problems in radial distribution networks with high number of rooftop photovoltaic (PV) connections. The µSVC is aimed to use in the PV system that has the fixed-power factor inverter, which cannot provide the active voltage controllability. The µSVC is a small shunt compensator installed parallel with the PV system and providing the automatic reactive power support to deal with the dynamic voltage variations at the point of common coupling. Two reactive power control methods, Q(P) and Q(V), can be employed into each µSVC depending on the location of PV systems. Moreover, the coordinated reactive power control among µSVCs, without communication system requirement, is presented for enhancing the Volt-Var controllability to the group of PV systems located in the same feeder. The dynamic voltage control performances are examined on simulation in DIgSILENT PowerFactory software. The results showed that the proposed control method can mitigate the rise of voltage level sufficiently.


2020 ◽  
Vol 140 (6) ◽  
pp. 456-464
Author(s):  
Naoto Yorino ◽  
Tsubasa Watakabe ◽  
Ahmed Bedawy Khalifa ◽  
Yutaka Sasaki ◽  
Yoshifumi Zoka

2012 ◽  
Vol 132 (4) ◽  
pp. 309-316 ◽  
Author(s):  
Shoji Kawasaki ◽  
Noriaki Kanemoto ◽  
Hisao Taoka ◽  
Junya Matsuki ◽  
Yasuhiro Hayashi

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3222
Author(s):  
Duc Nguyen Huu

Increasing offshore wind farms are rapidly installed and planned. However, this will pose a bottle neck challenge for long-distance transmission as well as inherent variation of their generating power outputs to the existing AC grid. VSC-HVDC links could be an effective and flexible method for this issue. With the growing use of voltage source converter high-voltage direct current (VSC-HVDC) technology, the hybrid VSC-HVDC and AC system will be a next-generation transmission network. This paper analyzes the contribution of the multi VSC-HVDC system on the AC voltage stability of the hybrid system. A key contribution of this research is proposing a novel adaptive control approach of the VSC-HVDC as a so-called dynamic reactive power booster to enhance the voltage stability of the AC system. The core idea is that the novel control system is automatically providing a reactive current based on dynamic frequency of the AC system to maximal AC voltage support. Based on the analysis, an adaptive control method applied to the multi VSC-HVDC system is proposed to realize maximum capacity of VSC for reactive power according to the change of the system frequency during severe faults of the AC grid. A representative hybrid AC-DC network based on Germany is developed. Detailed modeling of the hybrid AC-DC network and its proposed control is derived in PSCAD software. PSCAD simulation results and analysis verify the effective performance of this novel adaptive control of VSC-HVDC for voltage support. Thanks to this control scheme, the hybrid AC-DC network can avoid circumstances that lead to voltage instability.


2015 ◽  
Vol 713-715 ◽  
pp. 1556-1559
Author(s):  
Ning Wang ◽  
De Chao Zhang

The inductance and the capacitance on DC side are two important parameter of SVG. In this paper, the effect of inductance and capacitance on DC sides’ voltage control method of SVG is addressed.


Sign in / Sign up

Export Citation Format

Share Document