scholarly journals ID: 1037 Effect of fluorescent nanodiamonds on umbilical cord mesenchymal stem cell differentiation into hepatocyte-like cell

2017 ◽  
Vol 4 (S) ◽  
pp. 115
Author(s):  
Trung Kien Do ◽  
Nguyen Thi Thanh Nga ◽  
Nguyen Quynh Anh ◽  
Dinh Minh Pham ◽  
Chu Hoang Ha

Fluorescent nanodiamond (FND) indicated that it has excellent biocompatibility and photostability,so it well suited for long-term labeling and tracking of stem cells. There are many reports concerning the factors controlling stem cell differentiation. However, still little knowledge about the biomaterials properties influence stem cell alive, growth and differentiation processing. In this study, we evaluate the effect of fluorescent nanodiamond in in vitro culture and differentiation of ucMSC into hepatocyte-like cell. Mesenchymal stem cells (MSCs) were isolated from the umbilical cord (UC) and CD markers were analyzed by flow cytometry and genes expression. For hepatic differentiation of UC-MSCs, cells were induced with HGF and DMSO treated. FND was supply in the experimental group which 10 g/ml in 4 hours. The FND uptake was detected of fluorescence intensity of FND in cells by flow cytometry and laser scan microscopy. The effect of FND into UCMSCs was not only evaluated by the cell alive and growth assay but also effective differentiation throughout morphology charging or gene expression levels of AFP, ALB, and HNF4 were determined by RT-PCR and real-time PCR. The result showed that the FND was well uptake in UCMSCs. It was no affected into ability of the cell alive and growth. The existence of FNDs does not disturb the functions of UC-MSCs differentiation into hepatocyte-like cell. FND can be utilized for the labeling and tracking of UC-MSCs and hepatocyte-like cell in homing research.

2016 ◽  
Vol 8 (41) ◽  
pp. 7437-7444 ◽  
Author(s):  
Hongjun Song ◽  
Jenna M. Rosano ◽  
Yi Wang ◽  
Charles J. Garson ◽  
Balabhaskar Prabhakarpandian ◽  
...  

A dual-micropore-based microfluidic electrical impedance flow cytometer for non-invasive identification of the differentiation state of mesenchymal stem cells.


2015 ◽  
Vol 35 (10) ◽  
pp. 1700-1711 ◽  
Author(s):  
Fenfang Chen ◽  
Xia Lin ◽  
Pinglong Xu ◽  
Zhengmao Zhang ◽  
Yanzhen Chen ◽  
...  

Bone morphogenetic proteins (BMPs) play vital roles in regulating stem cell maintenance and differentiation. BMPs can induce osteogenesis and inhibit myogenesis of mesenchymal stem cells. Canonical BMP signaling is stringently controlled through reversible phosphorylation and nucleocytoplasmic shuttling of Smad1, Smad5, and Smad8 (Smad1/5/8). However, how the nuclear export of Smad1/5/8 is regulated remains unclear. Here we report that the Ran-binding protein RanBP3L acts as a nuclear export factor for Smad1/5/8. RanBP3L directly recognizes dephosphorylated Smad1/5/8 and mediates their nuclear export in a Ran-dependent manner. Increased expression of RanBP3L blocks BMP-induced osteogenesis of mouse bone marrow-derived mesenchymal stem cells and promotes myogenic induction of C2C12 mouse myoblasts, whereas depletion of RanBP3L expression enhances BMP-dependent stem cell differentiation activity and transcriptional responses. In conclusion, our results demonstrate that RanBP3L, as a nuclear exporter for BMP-specific Smads, plays a critical role in terminating BMP signaling and regulating mesenchymal stem cell differentiation.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fanglin Wang ◽  
Xiang Li ◽  
Zhiyuan Li ◽  
Shoushuai Wang ◽  
Jun Fan

The mesenchymal stem cells (MSCs) are known as highly plastic stem cells and can differentiate into specialized tissues such as adipose tissue, osseous tissue, muscle tissue, and nervous tissue. The differentiation of mesenchymal stem cells is very important in regenerative medicine. Their differentiation process is regulated by signaling pathways of epigenetic, transcriptional, and posttranscriptional levels. Circular RNA (circRNA), a class of noncoding RNAs generated from protein-coding genes, plays a pivotal regulatory role in many biological processes. Accumulated studies have demonstrated that several circRNAs participate in the cell differentiation process of mesenchymal stem cells in vitro and in vivo. In the current review, characteristics and functions of circRNAs in stem cell differentiation will be discussed. The mechanism and key role of circRNAs in regulating mesenchymal stem cell differentiation, especially adipogenesis, will be reviewed and discussed. Understanding the roles of these circRNAs will present us with a more comprehensive signal path network of modulating stem cell differentiation and help us discover potential biomarkers and therapeutic targets in clinic.


2015 ◽  
Vol 3 (6) ◽  
pp. 800-809 ◽  
Author(s):  
Jazmin Ozsvar ◽  
Suzanne M. Mithieux ◽  
Richard Wang ◽  
Anthony S. Weiss

Elastin-based biomaterials can direct mesenchymal stem cell differentiation.


2017 ◽  
Vol 10 (2) ◽  
pp. 154-159 ◽  
Author(s):  
Andreas Pfützner ◽  
Dorothee Schipper ◽  
Andreas Pansky ◽  
Claudia Kleinfeld ◽  
Barbara Roitzheim ◽  
...  

2009 ◽  
Vol 296 (1) ◽  
pp. H159-H170 ◽  
Author(s):  
Xiuju Li ◽  
Pratap Karki ◽  
Lei Lei ◽  
Huayan Wang ◽  
Larry Fliegel

Embryonic stem cells provide one potential source of cardiomyocytes for cardiac transplantation; however, after differentiation of stem cells in vitro, cardiomyocytes usually account for only a minority of cells present. To gain insights into improving cardiomyocyte development from stem cells, we examined the role of the Na+/H+ exchanger isoform 1 (NHE1) in cardiomyocyte differentiation. NHE1 protein and message levels were induced by treatment of CGR8 cells to form embryoid bodies and cardiomyocytes. The NHE1 protein was present on the cell surface and NHE1 inhibitor-sensitive activity was detected. Inhibition of NHE1 activity during differentiation of CGR8 cells prevented cardiomyocyte differentiation as indicated by decreased message for transcription factors Nkx2-5 and Tbx5 and decreased levels of α-myosin heavy chain protein. Increased expression of NHE1 from an adenoviral vector facilitated cardiomyocyte differentiation. Similar results were found with cardiomyocyte differentiation of P19 embryonal carcinoma cells. CGR8 cells were treated to induce differentiation, but when differentiation was inhibited by dispersing the EBs, myocardial development was inhibited. The results demonstrate that NHE1 activity is important in facilitating stem cell differentiation to cardiomyocyte lineage. Elevated NHE1 expression appears to be triggered as part of the process that facilitates cardiomyocyte development.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Takashi Hoshiba ◽  
Guoping Chen ◽  
Chiho Endo ◽  
Hiroka Maruyama ◽  
Miyuki Wakui ◽  
...  

Stem cells are a promising cell source for regenerative medicine. Stem cell differentiation must be regulated for applications in regenerative medicine. Stem cells are surrounded by extracellular matrix (ECM)in vivo. The ECM is composed of many types of proteins and glycosaminoglycans that assemble into a complex structure. The assembly of ECM molecules influences stem cell differentiation through orchestrated intracellular signaling activated by many ECM molecules. Therefore, it is important to understand the comprehensive role of the ECM in stem cell differentiation as well as the functions of the individual ECM molecules. Decellularized ECM is a usefulin vitromodel for studying the comprehensive roles of ECM because it retains a native-like structure and composition. Decellularized ECM can be obtained fromin vivotissue ECM or ECM fabricated by cells culturedin vitro. It is important to select the correct decellularized ECM because each type has different properties. In this review, tissue-derived and cell-derived decellularized ECMs are compared asin vitroECM models to examine the comprehensive roles of the ECM in stem cell differentiation. We also summarize recent studies using decellularized ECM to determine the comprehensive roles of the ECM in stem cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document