Clinical Use of Continuous Arterial Blood Gas Monitoring in the Pediatric Intensive Care Unit

PEDIATRICS ◽  
1999 ◽  
Vol 103 (2) ◽  
pp. 440-445 ◽  
Author(s):  
I. K. Weiss ◽  
S. Fink ◽  
R. Harrison ◽  
J. D. Feldman ◽  
J. E. Brill
Author(s):  
Azadeh R. Fayazi ◽  
Matteo Sesia ◽  
Kanwaljeet J. S. Anand

AbstractSupratherapeutic oxygen levels consistently cause oxygen toxicity in the lungs and other organs. The prevalence and severity of hyperoxemia among pediatric intensive care unit (PICU) patients remain unknown. This was the first study to examine the prevalence and duration of hyperoxemia in PICU patients receiving oxygen therapy. This is a retrospective chart review. This was performed in a setting of 36-bed PICU in a quaternary-care children's hospital. All the patients were children aged <18 years, admitted to the PICU for ≥24 hours, receiving oxygen therapy for ≥12 hours who had at least one arterial blood gas during this time.There was no intervention. Of 5,251 patients admitted to the PICU, 614 were included in the study. On average, these patients received oxygen therapy for 91% of their time in the PICU and remained hyperoxemic, as measured by pulse oximetry, for 65% of their time on oxygen therapy. Patients on oxygen therapy remained hyperoxemic for a median of 38 hours per patient and only 1.1% of patients did not experience any hyperoxemia. Most of the time (87.5%) patients received oxygen therapy through a fraction of inspired oxygen (FiO2)-adjustable device. Mean FiO2 on noninvasive support was 0.56 and on invasive support was 0.37. Mean partial pressure of oxygen (PaO2) on oxygen therapy was 108.7 torr and 3,037 (42.1%) of PaO2 measurements were >100 torr. Despite relatively low FiO2, PICU patients receiving oxygen therapy are commonly exposed to prolonged hyperoxemia, which may contribute to ongoing organ injury.


Author(s):  
Lukasz Krzych ◽  
Olga Wojnarowicz ◽  
Paweł Ignacy ◽  
Julia Dorniak

Introduction. Reliable results of an arterial blood gas (ABG) analysis are crucial for the implementation of appropriate diagnostics and therapy. We aimed to investigate the differences (Δ) between ABG parameters obtained from point-of-care testing (POCT) and central laboratory (CL) measurements, taking into account the turnaround time (TAT). Materials and methods. A number of 208 paired samples were collected from 54 intensive care unit (ICU) patients. Analyses were performed using Siemens RAPIDPoint 500 Blood Gas System on the samples just after blood retrieval at the ICU and after delivery to the CL. Results. The median TAT was 56 minutes (IQR 39-74). Differences were found for all ABG parameters. Median Δs for acid-base balance ere: ΔpH=0.006 (IQR –0.0070–0.0195), ΔBEef=–0.9 (IQR –2.0–0.4) and HCO3–act=–1.05 (IQR –2.25–0.35). For ventilatory parameters they were: ΔpO2=–8.3 mmHg (IQR –20.9–0.8) and ΔpCO2=–2.2 mmHg (IQR –4.2––0.4). For electrolytes balance the differences were: ΔNa+=1.55 mM/L (IQR 0.10–2.85), ΔK+=–0.120 mM/L (IQR –0.295–0.135) and ΔCl–=1.0 mM/L (IQR –1.0–3.0). Although the Δs might have caused misdiagnosis in 51 samples, Bland-Altman analysis revealed that only for pO2 the difference was of clinical significance (mean: –10.1 mmHg, ±1.96SD –58.5; +38.3). There was an important correlation between TAT and ΔpH (R=0.45, p<0.01) with the safest time delay for proper assessment being less than 39 minutes. Conclusions. Differences between POCT and CL results in ABG analysis may be clinically important and cause misdiagnosis, especially for pO2. POCT should be advised for ABG analysis due to the impact of TAT, which seems to be the most important for the analysis of pH.


Author(s):  
Nazlıhan Boyacı ◽  
Sariyya Mammadova ◽  
Nurgül Naurizbay ◽  
Merve Güleryüz ◽  
Kamil İnci ◽  
...  

Background: Transcutaneous partial pressure of carbon dioxide (PtCO2) monitorization provides a continuous and non-invasive measurement of partial pressure of carbon dioxide (pCO2). In addition, peripheral oxygen saturation (SpO2) can also be measured and followed by this method. However, data regarding the correlation between PtCO2 and arterial pCO2 (PaCO2) measurements acquired from peripheric arterial blood gas is controversial. Objective: We aimed to determine the reliability of PtCO2 with PaCO2 based on its advantages, like non-invasiveness and continuous applicability. Methods: Thirty-five adult patients with hypercapnic respiratory failure admitted to our tertiary medical intensive care unit (ICU) were included. Then we compared PtCO2 and PaCO2 and both SpO2 measurements simultaneously. Thirty measurements from the deltoid zone and 26 measurements from the cheek zone were applied. Results: PtCO2 could not be measured from the deltoid region in 5 (14%) patients. SpO2 and pulse rate could not be detected at 8 (26.7%) of the deltoid zone measurements. Correlation coefficients between PtCO2 and PaCO2 from deltoid and the cheek region were r: 0,915 and r: 0,946 (p = 0,0001). In comparison with the Bland-Altman test, difference in deltoid measurements was -1,38 ± 1,18 mmHg (p = 0.252) and in cheek measurements it was -5,12 ± 0,92 mmHg (p = 0,0001). There was no statistically significant difference between SpO2 measurements in each region. Conclusion: Our results suggest that PtCO2 and SpO2 measurements from the deltoid region are reliable compared to the arterial blood gas analysis in hypercapnic ICU patients. More randomized controlled studies investigating the effects of different measurement areas, hemodynamic parameters, and hemoglobin levels are needed.


1993 ◽  
Vol 21 (Supplement) ◽  
pp. S216
Author(s):  
Howard Nearman ◽  
Kiyotaka Fukamachi ◽  
Michael Herman ◽  
Max Hutton ◽  
Warren Clay

2001 ◽  
Vol 29 (2) ◽  
pp. 420-426 ◽  
Author(s):  
Lynne W. Coule ◽  
Edward J. Truemper ◽  
Curt M. Steinhart ◽  
William A. Lutin

1996 ◽  
Vol 22 (8) ◽  
pp. 818-828
Author(s):  
B. Venkatesh ◽  
S.-P. Hendry

1998 ◽  
Vol 45 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Seiji Ishikawa ◽  
Koshi Makita ◽  
Koichi Nakazawa ◽  
Keisuke Amaha

Sign in / Sign up

Export Citation Format

Share Document