Laryngeal Papillomas

1989 ◽  
Vol 11 (5) ◽  
pp. 132-159

Laryngeal papillomatosis is a difficult disease to manage, and patients with this disease are at risk of cancer and death. These infections are caused by human papillomaviruses of which there are more than 30. Human papillomavirus type 11 causes both genital warts (condyloma accuminata) and laryngeal papillomas. Available data indicate that neonates acquire this virus as they pass through a birth canal infected with human papillomavirus type 11. Laryngeal papillomas occur in children younger than 10 years of age, and the incidence peaks between the ages of 2 and 5 years. Signs of the disease are voice change, abnormal cry, and airway obstruction; it spontaneously regresses or becomes malignant.

2014 ◽  
Vol 20 (6) ◽  
pp. O406-O413 ◽  
Author(s):  
J.M. Godínez ◽  
S. Nicolás-Párraga ◽  
V.N. Pimenoff ◽  
B. Mengual-Chuliá ◽  
N. Muñoz ◽  
...  

2013 ◽  
Vol 154 (16) ◽  
pp. 603-618 ◽  
Author(s):  
Péter Bősze

The last 20 years is one of the most remarkable periods in the fight against cancer, with the realization that some human papillomaviruses are causally related to cancer and with the development of the vaccine against human papillomavirus infections. This is a historical event in medicine and the prophylactic human papillomavirus vaccines have provided powerful tools for primary prevention of cervical cancer and other human papillomavirus-associated diseases. This is very important as human papillomavirus infection is probably the most common sexually transmitted infection worldwide, and over one million women develop associated cancer yearly, which is about 5% of all female cancers, and half of them die of their disease. Cancers associated with oncogenic human papillomaviruses, mostly HPV16 and 18, include cervical cancer (100%), anal cancer (95%), vulvar cancer (40%), vaginal cancer (60%), penile cancer (40%), and oro-pharingeal cancers (65%). In addition, pre-cancers such as genital warts and the rare recurrent respiratory papillomatosis are also preventable by vaccination. Currently, the human papillomavirus vaccines have the potential to significantly reduce the burden of human papillomavirus associated conditions, including prevention of up to 70% of cervical cancers. Two prophylactic human papillomavirus vaccines are currently available worldwide: a bivalent vaccine (types 16 and 18), and a quadrivalent vaccine (types 6, 11, 16, and 18). Randomized controlled trials conducted on several continents during the last 10 years have demonstrated that these vaccines are safe without serious side effects; they are highly immunogenic and efficacious in preventing incident and persistent vaccine-type human papillomavirus infections, high grade cervical, vulvar and vaginal intraepithelial neoplasia and so on. In addition, the quadrivalent vaccine has been shown to prevent genital warts in women and men. The vaccine is most effective when given to human papillomavirus naive girls. The human papillomavirus vaccines have been incorporated into national immunization programs in 22 European countries. Routine vaccination is recommended for girls aged between 9 and 13 years and catch-up vaccination for females between 13 and 25 years of age. There is no excuse not to incorporate the vaccines into the Hungarian national immunization program. Albeit vaccination is expensive, it is cost-effective in the long run definitely. Anyway, vaccination is a matter of the specialty and the national health program, but not of business. We all are obliged to prevent human suffering. Orv. Hetil., 2013, 154, 603–618.


2020 ◽  
Vol 75 (3) ◽  
pp. 189-195
Author(s):  
Vladislav I. Krasnopolsky ◽  
Nina V. Zarochentseva ◽  
Ksenia V. Krasnopolskaya ◽  
Yulia N. Bashankaeva ◽  
Varvara S. Kuzmicheva

The purpose of the review a synthesis of research data on the role of human papillomavirus infection in the reproductive health of women and men. Key Points. Human papillomavirus (HPV) is one of the most common sexually transmitted viruses worldwide. According to the World Health Organization, HPV is the main cause of the development of HPV-associated diseases among both women and men. Viruses are subdivided into HPV with low carcinogenic risk, which cause benign warts, and HPV with high carcinogenic risk, which cause cancer. Different types of human papillomaviruses depending on their characteristic tropism, are divided into skin and mucous types. Viral infection in men leads to a decrease in the quality of sperm (for example, asthenozoospermia) due to apoptosis in sperm cells and due to the development of antisperm immunity. A negative viral effect on the fertility of women is manifested in an increase in the frequency of spontaneous miscarriages and a premature rupture of the amniotic membranes during pregnancy. There is evidence that HPV decreases the number of trophoblastic cells and abnormal trophoblastic-endometrial adhesion is also observed. In trophoblastic cells transfected with high-risk HPV, the level of apoptosis increases. HPV vaccination is safe, and the results show not only protection against HPV-associated diseases in women and men, but also a reduction of gestational complications, reduced preterm birth rates and the protection of newborns from infection.


2017 ◽  
Vol 5 (3) ◽  
pp. 69-82 ◽  
Author(s):  
Sigrun Smola ◽  
Connie Trimble ◽  
Peter L. Stern

It is now recognized that the immune system can be a key component of restraint and control during the neoplastic process. Human papillomavirus (HPV)-associated cancers of the anogenital tract and oropharynx represent a significant clinical problem but there is a clear opportunity for immune targeting of the viral oncogene expression that drives cancer development. However, high-risk HPV infection of the target epithelium and the expression of the E6/E7 oncogenes can lead to early compromise of the innate immune system (loss of antigen-presenting cells) facilitating viral persistence and increased risk of cancer. In these circumstances, a succession of interacting and self-reinforcing events mediated through modulation of different immune receptors, chemokine and cytokine responses (CCL20; CCL2; CCR2; IL-6; CCR7; IL-12) further promote the generation of an immune suppressive microenvironment [increased levels of Tregs, Th17, myeloid-derived suppressor cells (MDSCs) and PD-L1]. The overexpression of E6/E7 expression also compromises the ability to repair cellular DNA, leading to genomic instability, with the acquisition of genetic changes providing for the selection of advantaged cancer cells including additional strategies for immune escape. Therapeutic vaccines targeting the HPV oncogenes have shown some encouraging success in some recent early-phase clinical trials tested in patients with HPV-associated high-grade anogenital lesions. A significant hurdle to success in more advanced disease will be the local and systemic immune suppressive factors. Interventions targeting the different immunosuppressive components can provide opportunity to release existing or generate new and effective antitumour immunity. Treatments that alter the protumour inflammatory environment including toll-like receptor stimulation, inhibition of IL-6-related pathways, immune-checkpoint inhibition, direct modulation of MDSCs, Tregs and macrophages could all be useful in combination with therapeutic HPV vaccination. Future progress in delivering successful immunotherapy will depend on the configuration of treatment protocols in an insightful and timely combination.


2013 ◽  
pp. 1-17
Author(s):  
Linda Caryn Goldman ◽  
Amy Lynn Clouse

Sign in / Sign up

Export Citation Format

Share Document