scholarly journals Reduction of sulfur and oxidized forms of nitrogen by bacteria of Desulfuromonas sp., isolated from Yavorivske Lake, under the influence of ferrum citrate

2020 ◽  
Vol 28 (1) ◽  
pp. 53-59
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
O. D. Maslovska ◽  
G. V. Yavorska ◽  
B. M. Borsukevych

Technogenic reservoirs mainly contain several possible electron acceptors of anaerobic respiration, many of which are dangerous to the environment. The succession of their reduction (and thus detoxification) by sulfur reducing bacteria is not yet sufficiently studied. We investigated the influence of ferrum (III) citrate, present in the cultivation medium, on the reduction of sulfur, nitrate and nitrite ions by sulfur reducing bacteria Desulfuromonas acetoxidans IMV B-7384, Desulfuromonas sp. Yavor-5 and Desulfuromonas sp. Yavor-7, isolated from Yavorivske Lake. It was established that ferrum (III) citrate inhibits the biomass accumulation and hydrogen sulfide production by bacteria of Desulfuromonas sp. after simultaneous addition to the medium of 3.47 mM S0 and 1.74–10.41 mM ferrum (III) citrate, as compared with growth and hydrogen sulfide production by bacteria in the medium with only sulfur. In the medium with the same initial content (3.47 mM) S0 and ferrum (III) citrate bacteria produced ferrum (II) ions at concentrations 3.5–3.9 times higher than that of hydrogen sulfide. Ferrum (III) citrate inhibits the biomass accumulation, the nitrate or nitrite ions reduction and the ammonium ions production by bacteria of Desulfuromonas sp. after simultaneous addition to the medium of 3.47 mM NaNO3 or NaNO2 and 1.74–10.41 mM ferrum (III) citrate. In the medium with the same initial content (3.47 mM) NaNO3 and ferrum (III) citrate, bacteria produced ammonium ions at concentrations in 1.1 times higher than that of ferrum (II) ions. In the medium with the same initial content (3.47 mM) NaNO2 and ferrum (III) citrate, bacteria reduced 1.5–1.6 times more ferrum (III) than nitrite ions with production of ferrum (II) ions at concentrations 1.7 times higher than that of ammonium ions. The process of nitrate reduction carried out by bacteria of Desulfuromonas genus was less sensitive to the negative influence of ferrum (III) citrate, compared to the process of nitrite ions reduction. When the reduction of nitrate ions by bacteria in the presence of 1.74–10.41 mM ferrum (III) citrate decreased by 1.4–2.2 times, then the reduction of nitrite ions decreased by 1.8–3.2 times compared to their reduction in media with only NaNO3 or NaNO2, respectively. Although the reduction of ferrum (III) by cells in media with 3.47 mM S0, NaNO3 or NaNO2 and 1.74–10.41 mM ferrum (III) citrate decreased by 1.6–2.7, 1.6–2.7 and 1.1–2.2 times, respectively, compared to the reduction in medium with only ferrum (III) citrate, the investigated strains of bacteria were resistant to high concentrations of trivalent ferrum compounds and can therefore can be used in technologies of complex purification of environments polluted by heavy metal and nitrogen compounds.

2010 ◽  
Vol 29 (6) ◽  
pp. 594-601 ◽  
Author(s):  
Daisuke Tsuchida ◽  
Yusuke Kajihara ◽  
Nobuhiro Shimidzu ◽  
Kengo Hamamura ◽  
Makoto Nagase

CORROSION ◽  
1960 ◽  
Vol 16 (6) ◽  
pp. 298t-300t ◽  
Author(s):  
L. L. WOLFSON

Abstract A general discussion is given of the role of microorganisms in secondary recovery systems, including the interrelationship of the organisms with chemical scale and corrosion. Specific types of microorganisms discussed include iron bacteria, algae and fungi, slime formers, and corrosive (sulfate reducing) bacteria. The life cycles and nutritional requirements of the organisms are discussed, with emphasis on the effects of the different types of bacteria on each other. A genus of organisms, capable of hydrogen sulfide production, and previously not implicated in secondary recovery problems, is presented and described. 3.3.4


2017 ◽  
Vol 28 (1-2) ◽  
pp. 84-95
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
Ch. I. Bohoslavets ◽  
T. M. Hrytsun’ ◽  
B. M. Borsukevych

Sulfate reducing bacteria, capable to reductive transformation of different nature pollutants, used in biotechnologies of purification of sewage, contaminated by carbon, sulfur, nitrogen and metal compounds. H2S formed by them sediment metals to form of insoluble sulfides. Number of metals can be used by these microorganisms as electron acceptors during anaerobic respiration. Because under the influence of metal compounds observed slowing of bacteria metabolism, selection isolated from technologically modified ecotops resistant to pollutions strains is important task to create a new biotechnologies of purification. That’s why the purpose of this work was to study the influence of potassium dichromate, present in medium, on reduction of sulfate and nitrate ions by sulfate reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6 and Desulfovibrio sp. Yav-8, isolated from Yavorivske Lake, to estimate the efficiency of possible usage of these bacteria in technologies of complex purification of environment from dangerous pollutants. Bacteria were cultivated in modified Kravtsov-Sorokin medium without SO42- and FeCl2×4H2O for 10 days. To study the influence of K2Cr2O7 on usage by bacteria SO42- or NO3- cells were seeded to media with Na2SO4×10H2O or NaNO3 and K2Cr2O7 at concentrations of 1.74 mM for total content of electron acceptors in medium 3.47 mM (concentration of SO42- in medium of standard composition). Cells were also seeded to media with 3.47 mM Na2SO4×10H2O, NaNO3 or K2Cr2O7 to investigate their growth in media with SO42-, NO3- or Cr2O72- as sole electron acceptor (control). Biomass was determined by turbidymetric method, content of sulfate, nitrate, dichromate, chromium (III) ions, hydrogen sulfide or ammonia ions in cultural liquid – by spectrophotometric method. It was found that K2Cr2O7 inhibits growth (2.2 and 1.3 times) and level of reduction by bacteria sulfate or nitrate ions (4.2 and 3.0 times, respectively) at simultaneous addition into cultivation medium of 1.74 mM SO42- or NO3- and 1.74 mM Cr2O72-, compared with growth and level of reduction of sulfate or nitrate ions in medium only with SO42- or NO3- as sole electron acceptor. Revealed that during cultivation of bacteria in presence of equimolar amount of SO42- or NO3- and Cr2O72-, last used by bacteria faster, content of Cr3+ during whole period of bacteria cultivation exceeded content H2S or NH4+. K2Cr2O7 in medium has most negative influence on dissimilatory reduction by bacteria SO42- than NO3-, since level of nitrate ions reduction by cells in medium with NO3- and Cr2O72- was a half times higher than level of sulfate ions reduction by it in medium with SO42- and Cr2O72-. The ability of bacteria Desulfovibrio sp. to priority reduction of Cr2O72- and after their exhaustion − NO3- and SO42- in the processes of anaerobic respiration can be used in technologies of complex purification of environment from toxic compounds.


2007 ◽  
Vol 44 (5) ◽  
pp. 544-549 ◽  
Author(s):  
M. Ma ◽  
T. Amano ◽  
M. Enokimoto ◽  
T. Yano ◽  
K.K. Moe ◽  
...  

2008 ◽  
Vol 21 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Ya-Hong Chen ◽  
Wan-Zhen Yao ◽  
Yan-Ling Ding ◽  
Bin Geng ◽  
Ming Lu ◽  
...  

1975 ◽  
Vol 18 (1) ◽  
pp. 0149-0151 ◽  
Author(s):  
G. L. Avery ◽  
G. E. Merva ◽  
J. B. Gerrish

Sign in / Sign up

Export Citation Format

Share Document