scholarly journals Physical Properties of Nano-HAs/ZrO2 Coating on Surface of Titanium Materials Used in Dental-implants and its Biological Compatibility

2017 ◽  
Vol 4 (2) ◽  
pp. 67-74
Author(s):  
Xiao-feng Pang ◽  
2017 ◽  
Vol 63 (2) ◽  
pp. 67-78 ◽  
Author(s):  
M. Kępniak ◽  
P. Woyciechowski ◽  
W. Franus

Abstract The preliminary stage of asphalt mixture production involves the drying and dedusting of coarse aggregates. The most common types of coarse aggregates used are limestone and basalt. In the process of drying and dedusting the dryer filter accumulates large quantities of waste in the form of mineral powder. This paper introduces an investigation into limestone powder waste as a potential microfiller of polymer composites. Physical characteristics such as the granulation the of powder collected from the filter - in terms of the season of its collection and the type of input materials used - were analysed. A scanning electron microscope (SEM) was used for the investigation described within this paper. The obtained results were compared against those of other materials which can be used as polymer composites microfillers.


2017 ◽  
Vol 907 ◽  
pp. 104-118
Author(s):  
Maria Stoicănescu ◽  
Eliza Buzamet ◽  
Dragos Vladimir Budei ◽  
Valentin Craciun ◽  
Roxana Budei ◽  
...  

Dental implants are becoming increasingly used in current dental practice. This increased demand has motivated manufacturers to develop varieties of product through design, but also looking for new materials used to improve surface characteristics in order to obtain a better osseointegration. But the increase in the use of implants goes to a consequent increase in the number of failures. These failures are caused either by treatment complications (peri-implantitis), by fatigue breakage under mechanical over-stress, by defective raw material, or due to errors during the insertion procedures. Although they are rare, these complications are serious in dentistry. Before to market a dental implant to clinical practitioners, the product is validated among other determinations in number of biocompatibility research. Raw material issues, details about its structure and properties are less published by the scientific literature, but all this are subject of a carefully analysis of the producers. Breaking of dental implants during surgical procedures, during the prosthetic procedures or during use (chewing, bruxism, accidents, etc.), is the second most common cause of loss of an implant after consecutive peri-implantitis rejection. Although the frequency of this type of failure for a dental implant is much smaller than those caused by the peri-implantitis, a detailed study of broken implants can explain possible causes. The use of scanning electron microscopy (SEM) in the study of the cleave areas explain the production mechanism of cleavages, starting from micro-fissures in the alloy used for the production of dental implants. These micro-fissures in weak areas of the implant (anti-rotational corners of the polygons, etc.) could generate a serious risk of cleavage first time when a higher force is applied.


Author(s):  
Marzia Cosmi ◽  
Nathaly Gonzalez-Quiñonez ◽  
Pablo Tejerina Díaz ◽  
Ángel Manteca ◽  
Elisa Blanco González ◽  
...  

The bio-tribocorrosion of metallic materials used for dental implants (Ti and alloys) in the oral environment involves the production of metallic debris in the ionic, but also in the nanoparticulated...


2018 ◽  
Vol 1 (1) ◽  
pp. 834-842
Author(s):  
Murat Koru ◽  
Kenan Büyükkaya

The physical properties of the materials used are also important in the thermal conduction, besides many other factors. In this study, nettle fiber/polyester composites were formed using stinging nettle grown in the Black Sea region. The stinging nettle fibers used in the formation of these composites were divided into three parts as bottom, middle, and top. The physical properties (diameter, density, crystallinity) of the fibers obtained from different parts of the plant and how the increased fiber concentration affected the thermal conductivity coefficients of the composite materials formed were studied. As a result, it was observed that the thermal conductivity coefficients of the composites increased with the increase of the crystallinity ratio of the fiber. Moreover, the increased fiber concentration significantly increased the thermal conductivity coefficient of the composite materials produced.


2012 ◽  
Vol 1464 ◽  
Author(s):  
G. Bahar Basim ◽  
Zeynep Ozdemir ◽  
Ayse Karagoz

ABSTRACTBiomaterials are widely used for dental implants, orthopedic devices, cardiac pacemakers and catheters. One of the main concerns on using bio-implants is the risk of infection on the materials used. In this study, our aim is to quantify the effect of controlled surface roughness on the infection resistance of the titanium based bio-materials which are commonly used for orthopedic devices and dental implants. To modify the surface roughness of the surfaces in a controlled manner, Chemical Mechanical Polishing (CMP) technique, which is extensively used in semiconductor industry for the planarization of the interlayer dielectrics and metals, is utilized. To determine the infection resistance of the created films with varying surface roughness, bacteria growth response was studied on titanium plates after CMP.


Author(s):  
T. Watanabe ◽  
Kimitoshi Ando ◽  
T. Ito ◽  
Naritaka Kitamura ◽  
Kazuhiko Nakata ◽  
...  

2019 ◽  
Vol 35 (8) ◽  
pp. 1065-1072
Author(s):  
M.Q. Marashdeh ◽  
S. Friedman ◽  
C. Lévesque ◽  
Y. Finer

2013 ◽  
Vol 315 ◽  
pp. 477-481 ◽  
Author(s):  
I.A. Rafukka ◽  
B. Onyekpe ◽  
Y. Tijjani

The physical properties of some materials used by local foundries were investigated with a view to assessing their suitability for use as low heat duty refractory bricks. The samples were collected from Malamai village, Gezawa Local Government, Kano state; they are Gezawa clay and Burji (Clay). The samples were crushed, ground, sieved and the chemical compositions were determined. The clay samples were treated separately as well as blended with Gezawa clay in different proportions and molded in to bricks. The bricks were dried and fired to 1100. Test for refractoriness, thermal shock resistance, linear shrinkage; bulk density, porosity and compressive strength were carried out on each of the specimen. Burji blended with 50% to 90% Gezawa clay gave improved thermal shock resistance with a refractoriness of 1300 and hence could be used for non ferrous melting cupolas.


Sign in / Sign up

Export Citation Format

Share Document