scholarly journals Dynamics of viscoelastic element of flow channel

Author(s):  
Nina I. Eremeeva ◽  
Petr A. Velmisov

We consider the plane problem of aerohydroelasticity on small oscillations arising during bilateral flow around a viscoelastic element located on the rectilinear wall of an infinite channel. A mathematical model describing the problem in a linear formulation and corresponding to small perturbations of homogeneous subsonic flows and small deflections of a viscoelastic element is formulated. Using the methods of the theory of functions of a complex variable, the solution of the problem is reduced to the study of the integro-differential equation with partial derivatives with respect to the deflection function of the element. To solve this equation, a numerical method based on the application of the Bubnov-Galerkin method is proposed, followed by the reduction of the resulting system of integro-differential equations to the Volterra vector equation of the second kind. On the basis of the developed numerical method the computer simulation of the dynamics of the deformable element is carried out.

2017 ◽  
Vol 13 (2) ◽  
pp. 55-62
Author(s):  
M. Neštický ◽  
O. Palumbíny ◽  
G. Michalčonok

Abstract The paper presents two different approaches to estimating the region of stability of differential equation. Estimation of the region of stability is an essential practice in relation to control of the dynamical system. In this paper the objects of examination are differential equations with quasi-derivation. The equations have features that do not allow the application of classical methods for establishing stability. The goal is to compare the results of an analytic approach using Lyapunov method and computer simulation using a numerical method. The brief description of both methods are introduced and graphical results are presented and compared


2003 ◽  
Vol 8 (1) ◽  
pp. 3-18 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed to simulate the biosensor response in stirred as well as non stirred solution. The model involves three regions: the enzyme layer where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation the influence of the thickness of the enzyme layer as well the diffusion one on the biosensor response was investigated. The computer simulation was carried out using the finite difference technique.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


1995 ◽  
Vol 03 (03) ◽  
pp. 653-659 ◽  
Author(s):  
J. J. NIETO ◽  
A. TORRES

We introduce a new mathematical model of aneurysm of the circle of Willis. It is an ordinary differential equation of second order that regulates the velocity of blood flow inside the aneurysm. By using some recent methods of nonlinear analysis, we prove the existence of solutions with some qualitative properties that give information on the causes of rupture of the aneurysm.


1995 ◽  
Vol 38 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Mitsuhiro Fukuta ◽  
Tadashi Yanagisawa ◽  
Takashi Shimizu ◽  
Yasuhiro Suzuki

2019 ◽  
Vol 12 (4-5) ◽  
pp. 1167-1178
Author(s):  
Fang Qin ◽  
◽  
Ying Jiang ◽  
Ping Gu ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document