viscoelastic element
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7527
Author(s):  
Tomasz Socha ◽  
Krzysztof Kula ◽  
Arkadiusz Denisiewicz ◽  
Grzegorz Lesiuk ◽  
Wojciech Błażejewski

An experimental and analytical approach to the relaxation problem of wood-based materials—OSB (Oriented Strand Boards—pressed wood-based composite panels) beams, including beams with CFRP (Carbon fiber reinforced polymer) tape composite reinforcement, is presented. It is a relevant engineering and scientific problem due to the fact that wood and wood-based materials, as well as composite reinforcements, are widely used in building constructions. Their rheological properties are very important and complicated to estimate. A 10 day long relaxation test of thick OSB beams without reinforcement and with CFRP tape was performed. A four-point bending test with five different bending levels was performed, during which the reduction of the loading force was measured. A five-parameter rheological model was used to describe the rheology of the beams. The equations of this model were calculated with the use of Laplace transform, whereas the values of the parameters were calculated based on the experimental relaxation curves. A high correlation between experimental and theoretical results was obtained. A beam reinforced with CFRP tape was treated as a system with a viscoelastic element (OSB) and an elastic element (CFRP), joined together without the possibility of slipping. The equations of the mathematical model were calculated based on the assumptions of the linear theory of viscoelasticity and the convolution integral. A good correlation between experimental and theoretical results was obtained. A significant redistribution of stresses was observed during the relaxation of the reinforced beam. The reinforced beams show a higher stiffness of approximately 63% and carry proportionally higher loads than unreinforced beams at the same deflection values.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 258
Author(s):  
Hui Wei ◽  
Kui Xiang ◽  
Haibo Chen ◽  
Biwei Tang ◽  
Muye Pang

Adding damping such as viscoelastic element in series elastic actuators (SEA) can improve the force control bandwidth of the system and suppression of high frequency oscillations induced by the environment. Thanks to such advantages, series viscoelastic actuators (SVA) have recently gained increasing research interests from the community of robotic device design. Due to the inconvenience of mounting torque sensors, employing the viscoelastic elements to directly estimate the output torque is of great significance regarding the real-world applications of SVA. However, the nonlinearity and time-varying properties of viscoelastic materials would degrade the torque estimation accuracy. In such a case, it is paramount to simultaneously estimate the output torque state and viscoelastic model coefficients in order to enhance the torque estimation accuracy. To this end, this paper first completed the design of a rubber-based SVA device and used the Zenner linear viscoelastic model to model the viscoelastic element of the rubber. Subsequently, this paper proposed a dual extended Kalman filter- (DEFK) based torque estimation method to estimate the output torque and viscoelastic model coefficients simultaneously. The noisy observations of two Kalman filters were provided by motor current-based estimated torque. Moreover, the dynamic friction of harmonic drive of the designed SVA was modeled and compensated to enhance the reliability of current-based torque estimation. Finally, a number of experiments were carried out on SVA, and the experimental results confirmed the DEFK effectiveness of improving torque estimation accuracy compared to only-used rubber and only-used motor current torque estimation methods. Thus, the proposed method could be considered as an effective alternative approach of torque estimation for SVA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anthony L. Hessel ◽  
Jenna A. Monroy ◽  
Kiisa C. Nishikawa

The sliding filament–swinging cross bridge theory of skeletal muscle contraction provides a reasonable description of muscle properties during isometric contractions at or near maximum isometric force. However, it fails to predict muscle force during dynamic length changes, implying that the model is not complete. Mounting evidence suggests that, along with cross bridges, a Ca2+-sensitive viscoelastic element, likely the titin protein, contributes to muscle force and work. The purpose of this study was to develop a multi-level approach deploying stretch-shortening cycles (SSCs) to test the hypothesis that, along with cross bridges, Ca2+-sensitive viscoelastic elements in sarcomeres contribute to force and work. Using whole soleus muscles from wild type and mdm mice, which carry a small deletion in the N2A region of titin, we measured the activation- and phase-dependence of enhanced force and work during SSCs with and without doublet stimuli. In wild type muscles, a doublet stimulus led to an increase in peak force and work per cycle, with the largest effects occurring for stimulation during the lengthening phase of SSCs. In contrast, mdm muscles showed neither doublet potentiation features, nor phase-dependence of activation. To further distinguish the contributions of cross bridge and non-cross bridge elements, we performed SSCs on permeabilized psoas fiber bundles activated to different levels using either [Ca2+] or [Ca2+] plus the myosin inhibitor 2,3-butanedione monoxime (BDM). Across activation levels ranging from 15 to 100% of maximum isometric force, peak force, and work per cycle were enhanced for fibers in [Ca2+] plus BDM compared to [Ca2+] alone at a corresponding activation level, suggesting a contribution from Ca2+-sensitive, non-cross bridge, viscoelastic elements. Taken together, our results suggest that a tunable viscoelastic element such as titin contributes to: (1) persistence of force at low [Ca2+] in doublet potentiation; (2) phase- and length-dependence of doublet potentiation observed in wild type muscles and the absence of these effects in mdm muscles; and (3) increased peak force and work per cycle in SSCs. We conclude that non-cross bridge viscoelastic elements, likely titin, contribute substantially to muscle force and work, as well as the phase-dependence of these quantities, during dynamic length changes.


2021 ◽  
pp. 15-15
Author(s):  
Yan-Hong Liang ◽  
Kang-Jia Wang

This paper proposes a fractal viscoelastic element via He?s fractal derivative, its properties are analyzed in details by the two-scale transform for the first time. The element is used to establish a fractal Maxwell-rheological model(FMRM), which unifies the fractal creep equation and relaxation equation, and includes the classic elastic model and the classical Maxwell-rheological model as two special cases. This paper sheds a bright light on viscoelasticity, and the model can find wide applications in rock mechanics, plastic mechanics, and non-continuum mechanics.


2020 ◽  
Vol 10 (10) ◽  
pp. 3363
Author(s):  
Vasilis Votsios ◽  
Patricia Johns-Rahnejat ◽  
Homer Rahnejat

A new finite element-based contact mechanics analysis of layered viscoelastic solids of low elastic modulus is presented. The methodology is based on the Maxwell viscoelastic element, with stress relaxation taken into account by the Prony series’ representation of the bulk and shear material moduli. Simultaneous solutions for deviatoric and volumetric stresses were obtained under instantaneous elastic and subsequent viscoelastic relaxation, at multiples of the relaxation time of a Highly Filled Carbon Polymer (HFCP) layer. The results of the analysis were validated by a constructed, multi-layered sandwich sensor comprising the HFCP sensing elements covered by a protective silicone rubber surface of very low elastic modulus. The combined numerical-experimental approach, and the validated viscoelastic layered contact mechanics represent the original contribution of this paper, not hitherto reported in literature.


Author(s):  
Nina I. Eremeeva ◽  
Petr A. Velmisov

We consider the plane problem of aerohydroelasticity on small oscillations arising during bilateral flow around a viscoelastic element located on the rectilinear wall of an infinite channel. A mathematical model describing the problem in a linear formulation and corresponding to small perturbations of homogeneous subsonic flows and small deflections of a viscoelastic element is formulated. Using the methods of the theory of functions of a complex variable, the solution of the problem is reduced to the study of the integro-differential equation with partial derivatives with respect to the deflection function of the element. To solve this equation, a numerical method based on the application of the Bubnov-Galerkin method is proposed, followed by the reduction of the resulting system of integro-differential equations to the Volterra vector equation of the second kind. On the basis of the developed numerical method the computer simulation of the dynamics of the deformable element is carried out.


NANO ◽  
2017 ◽  
Vol 12 (03) ◽  
pp. 1750028 ◽  
Author(s):  
Sh. Maghsoodlou ◽  
B. Noroozi ◽  
A. K. Haghi

One of the most important issues in electrospinning process is whipping instability and solvent evaporation that plays a critical role in nanofiber formation. This report simulates whipping process using numerical methods for a bead-viscoelastic element fiber model combined with a polynomial equation for adding solvent evaporation influence on the three-dimensional path. The suggested equation has been obtained by applying Newton interpolation polynomial operation. Then the results of nanofiber diameters for experimental data, original model and modified model are compared with different statistical methods. ANOVA analysis shows the prediction of diameters could be more accurate and meaningful. Meanwhile, a calculation forecast accuracy chart is presented in detail. It is observed that our suggested model shows more accuracy and is more reliable than the bead-spring model.


2016 ◽  
Vol 10 (03) ◽  
pp. 1640009 ◽  
Author(s):  
Zhao Chen ◽  
Kikuchi Junya ◽  
Ikenaga Masahiro ◽  
Ikago Kohju ◽  
Inoue Norio

This work discusses the application of a two-node apparent mass device, designated as an inerter, which generates inertial resistance forces proportional to relative accelerations between its two nodes, to seismic isolated civil structures. This study employs a viscous mass damper (VMD) consisting of an inerter and a viscous element in parallel arrangement. Although the use of a VMD is effective in reducing relative responses, previous studies have experienced excessive floor response accelerations because the inerter directly transmits ground accelerations to the superstructure. This work examines the acceleration reduction effect of a viscoelastic element arranged in series to the VMD for filtering out the higher frequency components of the ground motion accelerations.


Sign in / Sign up

Export Citation Format

Share Document