scholarly journals Changes in abundance and composition of a Caribbean coral reef zooplankton community after 25 years

2016 ◽  
Vol 64 (3) ◽  
Author(s):  
Allan Martin Carrillo Baltodano ◽  
Álvaro Morales Ramírez

Coral reef zooplankton represents a key community in coral ecosystems, as they are involved in trophic and biogeochemical dynamics, and recruitment processes. Zooplankton abundance, composition and biomass were surveyed at six stations within the coral reef at Cahuita National Park, Limon, Costa Rica, in order to compare with the only previous study conducted during 1984. Samples were collected monthly (September 2010-August 2011). Seston biomass (0.49-85.87 mg/m3) and total abundance (1 145-112 422 ind./m3) fluctuated among the months and the stations. Higher values of these two variables were found in the rainiest months (November 2010 and May 2011). A total of 38 taxa were identified, of which calanoid copepods abundance dominated year round (66 %), followed by appendicularians (12 %). Zooplankton mean abundance in this survey resulted 20 times higher (13 184 ± 4 104 ind./m3)than in 1984 (645 ± 84 ind./m3). Copepods and appendicularians were the groups that differed the most, relative to the 1984 study, resulting in 63 and 170 times more abundant overall, respectively. An increase in terrestrial runoff and nutrient input during the past 30 years could explain these differences. High abundances of zooplankton may constitute an important food source for coral reef organisms in Cahuita ecosystem. In addition, zooplankton abundances here reported for Cahuita are among the worldwide highest coral reef zooplankton abundances, and further trophic models can help elucidate its role in coral reef resilience in the Caribbean Coast of Central America.

Diversity ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Julie E. Keister ◽  
Amanda K. Winans ◽  
BethElLee Herrmann

Several hypotheses of how zooplankton communities respond to coastal hypoxia have been put forward in the literature over the past few decades. We explored three of those that are focused on how zooplankton composition or biomass is affected by seasonal hypoxia using data collected over two summers in Hood Canal, a seasonally-hypoxic sub-basin of Puget Sound, Washington. We conducted hydrographic profiles and zooplankton net tows at four stations, from a region in the south that annually experiences moderate hypoxia to a region in the north where oxygen remains above hypoxic levels. The specific hypotheses tested were that low oxygen leads to: (1) increased dominance of gelatinous relative to crustacean zooplankton, (2) increased dominance of cyclopoid copepods relative to calanoid copepods, and (3) overall decreased zooplankton abundance and biomass at hypoxic sites compared to where oxygen levels are high. Additionally, we examined whether the temporal stability of community structure was decreased by hypoxia. We found evidence of a shift toward more gelatinous zooplankton and lower total zooplankton abundance and biomass at hypoxic sites, but no clear increase in the dominance of cyclopoid relative to calanoid copepods. We also found the lowest variance in community structure at the most hypoxic site, in contrast to our prediction. Hypoxia can fundamentally alter marine ecosystems, but the impacts differ among systems.


Author(s):  
Juan Armando Sánchez M.

The benthic communities distribution in Tesoro Island (Colombian Caribbean) coral reef was determined by cartography of reef morphology and functional groups from aerial photographstheodolite triangularon, and bottom transects over depths ranging from Oto 30 m. Tesoro Island is a sand cay reef developed over an emerged reef platform whose basal cone possibly originated by mud diapirism on the continental shelf. The benthic communities are distributed as subzones of the geomorphologic units. The reef crest lies along the breaker zone, formed by Millepora spp. buttresses covered on their tops by Palythoa spp. and seawardly by a turf of Dictyota spp. The rear reef (varying from 0.5-1.5 m in depth) is composed of pavement and grooves with live Pontes pontes and P. astreoides. The foré-reef terrace (2 to 9 m in depth) shows a low relief spur and grooves, composed of Acropora pa/mata skeletons on the windward side and A. cervicornis on the leeward side; sandy accumulations with dense and tall colonies of the gorgonaceans Pseudopterogorgia spp. are also appreciated. In the sandy reef platform there are monospecific patches of Montastraea annularis, P. pontes, M. faveolata, dead Acropora cervicornis and wide sandy zoneswhere patches of Halimedamonile are found. The slope edge, (depths ranging between 7 to >30m) shows mixed corals and gorgonaceans, at the drop-off, laminar corals, especially Montastraea franksiand Agaricia spp., jointly with other deep water organisms such as ellisellid gorgonaceans and antipatharians are found. The benthic communities distribution is influenced by reef geomorphology, wave energy diffraction and the past mass mortality of Acropora.


2021 ◽  
Author(s):  
Colleen B Bove ◽  
Laura Mudge ◽  
John F Bruno

Anthropogenic climate change is rapidly altering the characteristics and dynamics of biological communities. This is especially apparent in marine systems as the world's oceans are warming at an unprecedented rate, causing dramatic changes to coastal marine systems, especially on coral reefs of the Caribbean. We used three complementary ocean temperature databases (HadISST, Pathfinder, and OISST) to quantify change in thermal characteristics of Caribbean coral reefs over the last 150 years (1871-2020). These sea surface temperature (SST) databases included combined in situ and satellite-derived SST (HadISST, OISST), as well as satellite-only observations (Pathfinder) at multiple spatial resolutions. We also compiled a Caribbean coral reef database identifying 5,326 unique reefs across the region. We found that Caribbean reefs have warmed on average by 0.20 °C per decade since 1987, the calculated year that rapid warming began on Caribbean reefs. Further, geographic variation in warming rates ranged from 0.17 °C per decade on Bahamian reefs to 0.26 °C per decade on reefs within the Southern and Eastern Caribbean ecoregions. If this linear rate of warming continues, these already threatened ecosystems would warm by an additional 1.6 °C on average by 2100. We also found that marine heatwave (MHW) events are increasing in both frequency and duration across the Caribbean. Caribbean coral reefs now experience on average 5 MHW events annually, compared to 1 per year in the early 1980s. Combined, these changes have caused a dramatic shift in the composition and function of Caribbean coral reef ecosystems. If reefs continue to warm at this rate, we are likely to lose even the remnant Caribbean coral reef communities of today in the coming decades.


2021 ◽  
Vol 8 ◽  
Author(s):  
María Luz Fernández de Puelles ◽  
Magdalena Gazá ◽  
Miguel Cabanellas-Reboredo ◽  
Alba González-Vega ◽  
Inma Herrera ◽  
...  

The mesozooplankton community was analyzed over a 6-year period (2013-2018) during the post-eruptive stage of the submarine volcano Tagoro, located south of the island of El Hierro (Canary Archipelago, Spain). Nine cruises from March 2013 to March 2018 were carried out in two different seasons, spring (March-April) and autumn (October). A high-resolution study was carried out across the main cones of Tagoro volcano, as well as a large number of reference stations surrounding El Hierro (unaffected by the volcano). The zooplankton community at the reference stations showed a high similarity with more than 85% of the variation in abundance and composition attributable to seasonal differences. Moreover, our data showed an increase in zooplankton abundance in waters affected by the volcano with a higher presence of non-calanoid copepods and a decline in the diversity of the copepod community, indicating that volcanic inputs have a significant effect on these organisms. Fourteen different zooplankton groups were found but copepods were dominant (79%) with 59 genera and 170 species identified. Despite the high species number, less than 30 presented a larger abundance than 1%. Oncaea and Clausocalanus were the most abundant genera followed by Oithona and Paracalanus (60%). Nine species dominated (>2%): O. media, O. plumifera, and O. setigera among the non-calanoids and M. clausi, P. nanus, P. parvus, C. furcatus, C. arcuicornis, and N. minor among the calanoids. After the initial low abundance of the copepods as a consequence of the eruption, an increase was observed in the last years of the study, where besides the small Paracalanus and Clausocalanus, the Cyclopoids seem to have a good adaptive strategy to the new water conditions. The increase in zooplankton abundance and the decline in the copepod diversity in the area affected by the volcano indicate that important changes in the composition of the zooplankton community have occurred. The effect of the volcanic emissions on the different copepods was more evident in spring when the water was cooler and the mixing layer was deeper. Further and longer research is recommended to monitor the zooplankton community in the natural laboratory of the Tagoro submarine volcano.


BioScience ◽  
2020 ◽  
Author(s):  
George Roff

Abstract Modern-day Indo-Pacific coral reefs are characterized by rapid recovery driven by pulses of coral recruitment, but Caribbean reefs exhibit low rates of recruitment and poor recovery following a wide range of disturbance events. The contrasting evolutionary history of coral taxa offers key insight into biogeographic patterns of coral resilience. Following the closure of the Isthmus of Panama approximately 2.8 million years ago, widespread extinction of Caribbean corals led to an evolutionary bottleneck that favored large and long-lived species with a relatively high reliance on asexual versus sexual reproduction. In contrast, adaptive radiation led to the evolution of superrecruiting tabular, digitate, and corymbose corals that drive the rapid recovery of modern-day Indo-Pacific reefs following disturbance. The dominance of branching growth forms and evolutionary absence of superrecruiting growth forms throughout the entire evolutionary history of the Caribbean (approximately 38 million years ago to present) may explain the exceptionally high recruitment rates on modern-day Indo-Pacific reefs and low historical recruitment on Caribbean reefs. The evolutionary history of the Caribbean coral reef-building taxa implies that, even with a reversal of ecosystem state, widespread recovery of Caribbean reefs may be limited.


2021 ◽  
Vol 118 (29) ◽  
pp. e2017735118
Author(s):  
Erin M. Dillon ◽  
Douglas J. McCauley ◽  
Jorge Manuel Morales-Saldaña ◽  
Nicole D. Leonard ◽  
Jian-xin Zhao ◽  
...  

Preexploitation shark baselines and the history of human impact on coral reef–associated shark communities in the Caribbean are tpoorly understood. We recovered shark dermal denticles from mid-Holocene (∼7 ky ago) and modern reef sediments in Bocas del Toro, Caribbean Panama, to reconstruct an empirical shark baseline before major human impact and to quantify how much the modern shark community in the region had shifted from this historical reference point. We found that denticle accumulation rates, a proxy for shark abundance, declined by 71% since the mid-Holocene. All denticle morphotypes, which reflect shark community composition, experienced significant losses, but those morphotypes found on fast-swimming, pelagic sharks (e.g., families Carcharhinidae and Sphyrnidae) declined the most. An analysis of historical records suggested that the steepest decline in shark abundance occurred in the late 20th century, coinciding with the advent of a targeted shark fishery in Panama. Although the disproportionate loss of denticles characterizing pelagic sharks was consistent with overfishing, the large reduction in denticles characterizing demersal species with low commercial value (i.e., the nurse shark Ginglymostoma cirratum) indicated that other stressors could have exacerbated these declines. We demonstrate that the denticle record can reveal changes in shark communities over long ecological timescales, helping to contextualize contemporary abundances and inform shark management and ecology.


Sign in / Sign up

Export Citation Format

Share Document