scholarly journals sUAS Remote Sensing for Closed-canopy Tree Inventory on Earthen Dams

GI_Forum ◽  
2021 ◽  
Vol 1 ◽  
pp. 5-12
Author(s):  
Cuizhen Wang ◽  
Inthuorn Sasanakul ◽  
Herrick Brown
2015 ◽  
Vol 112 (24) ◽  
pp. 7472-7477 ◽  
Author(s):  
J. W. Ferry Slik ◽  
Víctor Arroyo-Rodríguez ◽  
Shin-Ichiro Aiba ◽  
Patricia Alvarez-Loayza ◽  
Luciana F. Alves ◽  
...  

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.


2020 ◽  
Vol 12 (4) ◽  
pp. 669 ◽  
Author(s):  
Rose-Anne Bell ◽  
J. Nikolaus Callow

Coastal woodlands, notable for their floristic diversity and ecosystem service values, are increasingly under threat from a range of interacting biotic and abiotic stressors. Monitoring these complex ecosystems has traditionally been confined to field-scale vegetation surveys; however, remote sensing applications are increasingly becoming more viable. This study reports on the application of field-based monitoring and remote sensing/(Geographic Information System) GIS to interrogate trends in Banksia coastal woodland decline (Kings Park, Perth and Western Australia) and documents the patterns, and potential drivers, of tree mortality over the period 2012–2016. Application of geographic object-based image analysis (GEOBIA) at a park scale was of limited benefit within the closed-canopy ecosystem, with manual digitisation methods feasible only at the smaller transect scale. Analysis of field-based identification of tree mortality, crown-specific spectral characteristics and park-scale change detection imagery identified climate-driven stressors as the likely primary driver of tree mortality in the woodland, with vegetation decline exacerbated by secondary factors, including water stress and low system resilience occasioned by the inability to access the water table and competition between tree species. The results from this paper provide a platform to inform monitoring efforts using airborne remote sensing within coastal woodlands.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 115
Author(s):  
Yi-Chun Lin ◽  
Jidong Liu ◽  
Songlin Fei ◽  
Ayman Habib

LiDAR technology has been proven to be an effective remote sensing technique for forest inventory and management. Among existing remote sensing platforms, unmanned aerial vehicles (UAV) are rapidly gaining popularity for their capability to provide high-resolution and accurate point clouds. However, the ability of a UAV LiDAR survey to map under canopy features is determined by the degree of penetration, which in turn depends on the percentage of canopy cover. In this study, a custom-built UAV-based mobile mapping system is used for simultaneously collecting LiDAR and imagery data under different leaf cover scenarios in a forest plantation. Bare earth point cloud, digital terrain model (DTM), normalized height point cloud, and quantitative measures for single-tree inventory are derived from UAV LiDAR data. The impact of different leaf cover scenarios (leaf-off, partial leaf cover, and full leaf cover) on the quality of the products from UAV surveys is investigated. Moreover, a bottom-up individual tree localization and segmentation approach based on 2D peak detection and Voronoi diagram is proposed and compared against an existing density-based clustering algorithm. Experimental results show that point clouds from different leaf cover scenarios are in good agreement within a 1-to-10 cm range. Despite the point density of bare earth point cloud under leaf-on conditions being substantially lower than that under leaf-off conditions, the terrain models derived from the three scenarios are comparable. Once the quality of the DTMs is verified, normalized height point clouds that characterize the vertical forest structure can be generated by removing the terrain effect. Individual tree detection with an overall accuracy of 0.98 and 0.88 is achieved under leaf-off and partial leaf cover conditions, respectively. Both the proposed tree localization approach and the density-based clustering algorithm cannot detect tree trunks under full leaf cover conditions. Overall, the proposed approach outperforms the existing clustering algorithm owing to its low false positive rate, especially under leaf-on conditions. These findings suggest that the high-quality data from UAV LiDAR can effectively map the terrain and derive forest structural measures for single-tree inventories even under a partial leaf cover scenario.


2020 ◽  
Vol 12 (21) ◽  
pp. 3476
Author(s):  
María Culman ◽  
Stephanie Delalieux ◽  
Kristof Van Tricht

Phoenix palms cover more than 1.3 million hectares in the Mediterranean, Middle East, and North Africa regions and they represent highly valued assets for economic, environmental, and cultural purposes. Despite their importance, information on the number of palm trees and the palm distribution across different scenes is difficult to obtain and, therefore, limited. In this work, we present the first region-wide spatial inventory of Phoenix dactylifera (date palm) and Phoenix canariensis (canary palm) trees, based on remote imagery from the Alicante province in Spain. A deep learning architecture that was based on convolutional neural networks (CNN) was implemented to generate a detection model able to locate and classify individual palms trees from aerial high-resolution RGB images. When considering that creating large labeled image datasets is a constraint in object detection applied to remote sensing data, as a strategy for pre-training detection models on a similar task, imagery and palm maps from the autonomous community of the Canary Islands were used. Subsequently, these models were transferred for re-training with imagery from Alicante. The best performing model was capable of mapping Phoenix palms in different scenes, with a changeable appearance, and with varied ages, achieving a mean average precision (mAP) value of 0.861. In total, 511,095 Phoenix palms with a probability score above 0.5 were detected over an area of 5816 km2. The detection model, which was obtained from an out-of-the-box object detector, RetinaNet, provides a fast and straightforward method to map isolated and densely distributed date and canary palms—and other Phoenix palms. The inventory of palm trees established here provides quantitative information on Phoenix palms distribution, which could be used as a baseline for long-term monitoring of palms’ conditions. In addition to boosting palm tree inventory across multiple landscapes at a large scale, the detection model demonstrates how image processing techniques that are based on deep learning leverage image understanding from remote sensing data.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 659
Author(s):  
Cuizhen Wang ◽  
Grayson Morgan ◽  
Michael E. Hodgson

Defined as “personal remote sensing”, small unmanned aircraft systems (sUAS) have been increasingly utilized for landscape mapping. This study tests a sUAS procedure of 3D tree surveying of a closed-canopy woodland on an earthen dam. Three DJI drones—Mavic Pro, Phantom 4 Pro, and M100/RedEdge-M assembly—were used to collect imagery in six missions in 2019–2020. A canopy height model was built from the sUAS-extracted point cloud and LiDAR bare earth surface. Treetops were delineated in a variable-sized local maxima filter, and tree crowns were outlined via inverted watershed segmentation. The outputs include a tree inventory that contains 238 to 284 trees (location, tree height, crown polygon), varying among missions. The comparative analysis revealed that the M100/RedEdge-M at a higher flight altitude achieved the best performance in tree height measurement (RMSE = 1 m). However, despite lower accuracy, the Phantom 4 Pro is recommended as an optimal drone for operational tree surveying because of its low cost and easy deployment. This study reveals that sUAS have good potential for operational deployment to assess tree overgrowth toward dam remediation solutions. With 3D imaging, sUAS remote sensing can be counted as a reliable, consumer-oriented tool for monitoring our ever-changing environment.


Author(s):  
Karl F. Warnick ◽  
Rob Maaskant ◽  
Marianna V. Ivashina ◽  
David B. Davidson ◽  
Brian D. Jeffs

Author(s):  
Dimitris Manolakis ◽  
Ronald Lockwood ◽  
Thomas Cooley

Sign in / Sign up

Export Citation Format

Share Document